• Stars
    star
    200
  • Rank 193,931 (Top 4 %)
  • Language
    R
  • Created about 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

🚀 R package: future.apply - Apply Function to Elements in Parallel using Futures
CRAN check status R CMD check status Coverage Status

future.apply: Apply Function to Elements in Parallel using Futures

Introduction

The purpose of this package is to provide worry-free parallel alternatives to base-R "apply" functions, e.g. apply(), lapply(), and vapply(). The goal is that one should be able to replace any of these in the core with its futurized equivalent and things will just work. For example, instead of doing:

library(datasets)
library(stats)
y <- lapply(mtcars, FUN = mean, trim = 0.10)

one can do:

library(future.apply)
plan(multisession) ## Run in parallel on local computer

library(datasets)
library(stats)
y <- future_lapply(mtcars, FUN = mean, trim = 0.10)

Reproducibility is part of the core design, which means that perfect, parallel random number generation (RNG) is supported regardless of the amount of chunking, type of load balancing, and future backend being used. To enable parallel RNG, use argument future.seed = TRUE.

Role

Where does the future.apply package fit in the software stack? You can think of it as a sibling to foreach, furrr, BiocParallel, plyr, etc. Just as parallel provides parLapply(), foreach provides foreach(), BiocParallel provides bplapply(), and plyr provides llply(), future.apply provides future_lapply(). Below is a table summarizing this idea:

Package Functions Backends
future.apply

Future-versions of common goto *apply() functions available in base R (of the base package):
future_apply(), future_by(), future_eapply(), future_lapply(), future_Map(), future_mapply(), future_.mapply(), future_replicate(), future_sapply(), future_tapply(), and future_vapply().
The following function is not implemented:
future_rapply()
All future backends
parallel mclapply(), mcmapply(), clusterMap(), parApply(), parLapply(), parSapply(), ... Built-in and conditional on operating system
foreach foreach(), times() All future backends via doFuture
furrr future_imap(), future_map(), future_pmap(), future_map2(), ... All future backends
BiocParallel Bioconductor's parallel mappers:
bpaggregate(), bpiterate(), bplapply(), and bpvec()
All future backends via doFuture (because it supports foreach) or via BiocParallel.FutureParam (direct BiocParallelParam support; prototype)
plyr **ply(..., .parallel = TRUE) functions:
aaply(), ddply(), dlply(), llply(), ...
All future backends via doFuture (because it uses foreach internally)

Note that, except for the built-in parallel package, none of these higher-level APIs implement their own parallel backends, but they rather enhance existing ones. The foreach framework leverages backends such as doParallel, doMC and doFuture, and the future.apply framework leverages the future ecosystem and therefore backends such as built-in parallel, future.callr, and future.batchtools.

By separating future_lapply() and friends from the future package, it helps clarifying the purpose of the future package, which is to define and provide the core Future API, which higher-level parallel APIs can build on and for which any futurized parallel backends can be plugged into.

The API and identity of the future.apply package will be kept close to the *apply() functions in base R. In other words, it will neither keep growing nor be expanded with new, more powerful apply-like functions beyond those core ones in base R. Such extended functionality should be part of a separate package.

Installation

R package future.apply is available on CRAN and can be installed in R as:

install.packages("future.apply")

Pre-release version

To install the pre-release version that is available in Git branch develop on GitHub, use:

remotes::install_github("HenrikBengtsson/future.apply", ref="develop")

This will install the package from source.

Contributing

To contribute to this package, please see CONTRIBUTING.md.

More Repositories

1

future

🚀 R package: future: Unified Parallel and Distributed Processing in R for Everyone
R
916
star
2

progressr

三 R package: An Inclusive, Unifying API for Progress Updates
R
254
star
3

matrixStats

R package: Methods that Apply to Rows and Columns of Matrices (and to Vectors)
R
191
star
4

startup

🔧 R package: startup - Friendly R Startup Configuration
R
150
star
5

Wishlist-for-R

Features and tweaks to R that I and others would love to see - feel free to add yours!
R
127
star
6

speedtest-cli-extras

📶 Tools to enhance the speedtest-cli network tools
Shell
120
star
7

parallelly

R package: parallelly - Enhancing the 'parallel' Package
R
111
star
8

R.matlab

R package: R.matlab
R
84
star
9

future.batchtools

🚀 R package future.batchtools: A Future API for Parallel and Distributed Processing using batchtools
R
83
star
10

doFuture

🚀 R package: doFuture - Use Foreach to Parallelize via Future Framework
R
79
star
11

R.utils

🔧 R package: R.utils (this is *not* the utils package that comes with R itself)
R
59
star
12

dirdf

R package: dirdf - Extracts Metadata from Directory and File Names
R
58
star
13

future.callr

🚀 R package future.callr: A Future API for Parallel Processing using 'callr'
R
56
star
14

R.cache

♻️ R package: R.cache - Fast and Light-weight Caching (Memoization) of Objects and Results to Speed Up Computations
R
35
star
15

profmem

🔧 R package: profmem - Simple Memory Profiling for R
R
33
star
16

ucsf-vpn

Linux command-line client to manage a UCSF VPN connection
Shell
29
star
17

globals

🌐 R package: Identify Global Objects in R Expressions
R
28
star
18

listenv

R package: listenv - Environments Behaving As Lists
R
28
star
19

dotfiles-for-R

My dotfiles for R, e.g. .Rprofile and .Renviron
R
28
star
20

R.rsp

📄 R package: Dynamic generation of scientific reports
R
27
star
21

R.oo

R package: R.oo - R Object-Oriented Programming with or without References
R
20
star
22

brother-ptouch-label-printer-on-linux

How to print to a Brother P-touch (PT) label printer on Linux
Lua
18
star
23

R.devices

🎨 R package: Unified Handling of Graphics Devices
R
17
star
24

shellcheck-repl

Validation of Shell Commands Before Evaluation
Shell
14
star
25

future.mapreduce

[EXPERIMENTAL] R package: future.mapreduce - Utility Functions for Future Map-Reduce API Packages
R
13
star
26

port4me

🆓 port4me - Get the Same, Personal, Free TCP Port over and over
Shell
13
star
27

marshal

R package: marshal - Framework to Marshal Objects to be Used in Another R Processes
R
13
star
28

TopDom

R package: TopDom - An efficient and Deterministic Method for identifying Topological Domains in Genomes
R
13
star
29

git-bioc

:octocat: LEGACY: Git commands to keep a Git repository and Bioconductor SVN in sync
Shell
10
star
30

article-bengtsson-future

H. Bengtsson, A Unifying Framework for Parallel and Distributed Processing in R using Futures, The R Journal, 10.32614/RJ-2021-048, 2021
TeX
10
star
31

future.tests

🔩 R package: future.tests - Test Suite for Future API Backends
R
10
star
32

future.clustermq

🚀 R package future.clustermq: A Future API for Parallel Processing using 'clustermq'
R
9
star
33

aroma.affymetrix

🔬 R package: Analysis of Large Affymetrix Microarray Data Sets
R
9
star
34

fake-hdf5r

R package: hdf5r - Fake, Dummy, Non-Working 'hdf5r' Package for 'Seurat' Users
R
8
star
35

future-tutorial-user2022

Tutorial: An Introduction to Futureverse for Parallel Processing in R (useR! 2022)
R
8
star
36

RNativeAPI

R package: RNativeAPI - Documentation and Examples of the R Native API (Proof of Concept)
R
8
star
37

future.BatchJobs

🚀 R package: future.BatchJobs: A Future API for Parallel and Distributed Processing using BatchJobs [Intentionally archived on CRAN on 2021-01-08]
R
8
star
38

PSCBS

🔬 R package: Analysis of Parent-Specific DNA Copy Numbers
R
7
star
39

BiocParallel.FutureParam

🚀 R package: BiocParallel.FutureParam - Use Futures with BiocParallel
Makefile
7
star
40

affxparser

🔬 R package: This is the Bioconductor devel version of the affxparser package.
C++
7
star
41

illuminaio

🔬 R package: This is the Bioconductor devel version of the illuminaio package.
R
6
star
42

x86-64-level

x86-64-level - Get the x86-64 Microarchitecture Level on the Current Machine
Shell
6
star
43

future.aws.lambda

R package: future.aws.lambda - A Future API for Parallel Processing on AWS Lambda
5
star
44

conda-stage

conda-stage: Stage a Conda Environment on Local Disk
Shell
5
star
45

ThinkpadX1-Windows10-Middle_mouse_button_issue

AutoHotkey
5
star
46

teeny

🐣 R package: teeny - A Minimal, Valid, Complete R Package
R
4
star
47

rcli

R package: rcli - R Command-Line Interface Extras
R
4
star
48

easycatfs

easycatfs - Easy Mounting of Slow Folders onto Local Disk
Shell
4
star
49

TopDomData

R package: TopDomData - Data for the TopDom Package
R
3
star
50

pkgdown.extras

R package: pkgdown.extras: Enhancing the 'pkgdown' Package
R
3
star
51

environments

[experimental] R package: environments - Working with Environments and Closures in R
R
3
star
52

CostelloPSCNSeq

R package: Parent-specific Copy-number Estimation Pipeline using HT-Seq Data
R
3
star
53

fix.connections

R package: fix.connections - Workarounds for Deficiencies in R's Built-in Connections [PROTOTYPE]
R
3
star
54

jottr.org-blogdown

JottR - Some Jotter on R
HTML
2
star
55

git-r

A Git Extension Making it Easier to Build R from Source
Shell
2
star
56

revdepcheck.extras

R package: revdepcheck.extras - Reverse-Dependency Checks from the Command Line (CLI)
R
2
star
57

r-base-centos7

Docker container image: Centos 7 with R (UNDER CONSTRUCTION)
2
star
58

R.filesets

R package: R.filesets - Easy Handling of and Access to Files Organized in Structured Directories
R
2
star
59

CBI-software

A Scientific Software Stack for HPC (CentOS oriented)
Makefile
2
star
60

trackers

PROTOTYPE: trackers - Track Changes in R
R
2
star
61

R_CRAN_Booster

Chrome Extension: R CRAN Booster - adds useful annotations to CRAN package pages
JavaScript
2
star
62

drat

R package repository
1
star
63

RGitHubAPI

R
1
star
64

dotfiles-for-emacs

Dot files for Emacs
Emacs Lisp
1
star
65

bash-startup

Bash Startup utility functions
Shell
1
star
66

markin

markin - The Markdown Injector
Shell
1
star
67

AutoHotkey-scripts

AutoHotkey
1
star
68

docker-spark-r

1
star
69

aroma.cn

🔬 R package: aroma.cn
R
1
star
70

aroma.agilent

🔬 R package: aroma.agilent [DORMANT]
R
1
star
71

R.batch

R package: R.batch [DEPRECATED]
R
1
star
72

R.lang

R.package: R.lang [DEPRECATED]
R
1
star
73

r-mirrors

Mirror CRAN and Bioconductor repositories on the local file system for R package installaions without internet access
Makefile
1
star
74

covr-utils

[LEGACY] Enhancements for covr making it even easier to do assess source-code coverage of R package tests
R
1
star
75

amazonlinux-r-minimal

Docker Hub Image: docker pull henrikbengtsson/amazonlinux-r-minimal
1
star
76

future.api.tests

[PLANNED] R package future.api.tests: Conformance Tests for the Future API
1
star
77

calmate

🔬 R package: calmate - Improved Allele-Specific Copy Number of SNP Microarrays for Downstream Segmentation
R
1
star
78

LinuxEnvironmentModules

R package: LinuxEnvironmentModules - An R API to Linux Environment Modules
R
1
star
79

Affx-Fusion-SDK

🔬 Affymetrix Fusion Software Developers Kit (SDK)
C++
1
star
80

aroma.core

🔬 R package: aroma.core - Core Methods and Classes Used by 'aroma.*' Packages Part of the Aroma Framework
R
1
star