• Stars
    star
    121
  • Rank 293,924 (Top 6 %)
  • Language
  • Created over 4 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Papers and Public Datasets for Diabetic Retinopathy Detection

Awesome Diabetic-Retinopathy-Detection

If you have any problems, suggestions or improvements, please submit the issue or PR.

Contents

Datasets

Dataset Time Images Format Camera Resolution FOV Institudes Tasks
GDRBench 2023 111,357 / / / / Multiple Institues Domain Generalization in DR Grading (DGDR)
DRTiD 2022 3100 jpg / / Two-field 45° FDU DR grading / localization
FGADR 2021 2842 / / / / IIAI DR grading / Lesion segmentation
DDR 2019 13673 jpg Topcon, Nikon, Canon / 45° Nankai DR grading / Lesion segmentation/detection
DeepDRiD 2019 2256 jpg TOPCON 1956×1934 / SDCSP DR grading / Quality assessment
Kaggle 2015 88k jpeg / / 50° EyePACS DR grading
Messidor 2014 1200 tiff Topcpn TRC NW6 1440x960,
2240x1488,
2304x1536
45° ADCIS DR & DME grading
IDRiD 2018 516/81 jpg Kowa VX-10α 4288x2848 50° CESIP DR & DME grading / Typical DR lesions & optic disc detection / Optic disc and fovea center location
APTOS 2019 13k png / / / / DR grading
DIARETDB0 2007 130 jpg / 1500x1152 50° / DR lesions finding
DIARETDB1 2007 89 jpg / 1500x1152 50° / DR lesions detection
ROC 2007 100 jpg / 768×576,
1058x1061,
1386×1391
45° / Microaneurysms detection
E-ophtha-EX 2013 82 jpeg / 2533x1696 45° ADCIS Exudates detection
E-ophtha-MA 2013 381 jpeg / 2533x1696 45° ADCIS Microaneurysms detection

Papers

Survey

  • Deep learning techniques for diabetic retinopathy classification: A survey [pdf]

    • Mohammad Z. Atwany, Abdulwahab H. Sahyoun, Mohammad Yaqub. IEEE Access 2022
  • Applications of Deep Learning in Fundus Images: A Review [pdf] [code]

    • Tao Li, Wang Bo, Chunyu Hu, Hong Kang, Hanruo Liu, Kai Wang, Huazhu Fu. MIA 2021
  • IDRiD: Diabetic Retinopathy – Segmentation and Grading Challenge [pdf] [code]

    • Prasanna Porwal, Samiksha Pachade, Manesh Kokare. MIA 2020
  • Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey [pdf]

    • Toufique Ahmed Soomro, Junbin Gao, Tariq Khan. Pattern Anal Applic 2017
  • Computer-aided diagnosis of diabetic retinopathy: A review [pdf]

    • Muthu Rama Krishnan Mookiah, U. Rajendra Acharya, Chua Kuang Chua. Computers in Biology and Medicine 2013

Grading

2024

  • A deep learning system for predicting time to progression of diabetic retinopathy [pdf] [code]

    • Ling Dai, Bin Sheng, Tingli Chen, Qiang Wu, Ruhan Liu, et al. Nature Medicine
  • An interpretable dual attention network for diabetic retinopathy grading: IDANet [pdf]

    • Amit Bhati, Neha Gour, Pritee Khanna, Aparajita Ojha, Naoufel Werghi. Artificial Intelligence in Medicine 2024

2023

  • A foundation model for generalizable disease detection from retinal images [pdf] [code]

    • Yukun Zhou, Mark A. Chia, Siegfried K. Wagner, Murat S. Ayhan, Dominic J. Williamson, Robbert R. Struyven, Timing Liu, Moucheng Xu, Mateo G. Lozano, Peter Woodward-Court, Yuka Kihara, UK Biobank Eye & Vision Consortium, Andre Altmann, Aaron Y. Lee, Eric J. Topol, Alastair K. Denniston, Daniel C. Alexander & Pearse A. Keane. Nature 2023
  • DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical Coherence Tomography Angiography Images [pdf]

    • Bo Qian, Hao Chen, Xiangning Wang, Haoxuan Che, Gitaek Kwon, Jaeyoung Kim, Sungjin Choi, Seoyoung Shin, Felix Krause, Markus Unterdechler, et al. arxiv 2023
  • Image Quality-aware Diagnosis via Meta-knowledge Co-embedding [pdf] [code]

    • Haoxuan Che, Siyu Chen, Hao Chen. CVPR 2023
  • Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains [pdf] [code]

    • Haoxuan Che, Yuhan Cheng, Haibo Jin, Hao Chen. MICCAI 2023
  • Lesion-Aware Contrastive Learning for Diabetic Retinopathy Diagnosis [pdf] [code]

    • Shuai Cheng, Qingshan Hou, Peng Cao, Jinzhu Yang, Xiaoli Liu, Osmar R. Zaiane. MICCAI 2023
  • Diabetic Retinopathy Grading with Weakly-Supervised Lesion Priors [pdf] [code]

    • Junlin Hou, Fan Xiao, Jilan Xu, Rui Feng, Yuejie Zhang, Haidong Zou, Lina Lu, Wenwen Xue. ICASSP 2023

2022

  • Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images [pdf] [code]

    • Junlin Hou, Jilan Xu, Fan Xiao, Rui-Wei Zhao, Yuejie Zhang, Haidong Zou, Lina Lu, Wenwen Xue, Rui Feng. BIBM 2022
  • Image Quality Assessment Guided Collaborative Learning of image enhancement and classification for Diabetic Retinopathy Grading [pdf]

    • Qingshan Hou; Peng Cao; Liyu Jia; Leqi Chen; Jinzhu Yang; Osmar R. Zaiane. JBHI 2022
  • Focused Attention in Transformers for interpretable classification of retinal images [pdf] [code]

    • Clément Playout, Renaud Duval, Marie Carole Boucher, Farida Cheriet. MIA 2022
  • SatFormer: Saliency-Guided Abnormality-Aware Transformer for Retinal Disease Classification in Fundus Image [pdf]

    • Yankai Jiang, Ke Xu, Xinyue Wang, Yuan Li, Hongguang Cui, Yubo Tao, Hai Lin. IJCAI 2022
  • SSiT: Saliency-guided Self-supervised Image Transformer for Diabetic Retinopathy Grading [pdf] [code]

    • Yijin Huang, Junyan Lyu, Pujin Cheng, Roger Tam, Xiaoying Tang. arXiv preprint 2022.10.20
  • Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification [pdf]

    • Zhiyuan Cai, Li Lin, Huaqing He, Xiaoying Tang. MICCAI 2022
  • DRGen: Domain Generalization in Diabetic Retinopathy Classification [pdf]

    • Mohammad Atwany, Mohammad Yaqub. MICCAI 2022
  • Learning Robust Representation for Joint Grading of Ophthalmic Diseases via Adaptive Curriculum and Feature Disentanglement [pdf]

    • Haoxuan Che, Haibo Jin, Hao Chen. MICCAI 2022
  • Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy Analysis on OCTA Images [pdf] [code]

    • Junlin Hou, Fan Xiao, Jilan Xu, Yuejie Zhang, Haidong Zou, Rui Feng. MICCAI Challenge 2022

2021

  • Rotation-oriented Collaborative Self-supervised Learning for Retinal Disease Diagnosis [pdf] [code]

    • Xiaomeng Li, Xiaowei Hu, Xiaojuan Qi, Lequan Yu, Wei Zhao, Pheng-Ann Heng, Lei Xing. TMI 2021
  • MVDRNet: Multi-view diabetic retinopathy detection by combining DCNNs and attention mechanisms [pdf]

    • Xiaoling Luo, Zuhui Pu, Yong Xu, Wai Keung Wong, Jingyong Su, Xiaoyan Dou, Baikang Ye, Jiying Hu, Lisha Mou. PR 2021
  • MIL-VT: Multiple Instance Learning Enhanced Vision Transformer for Fundus Image Classification [pdf] [code]

    • Shuang Yu, Kai Ma, Qi Bi, Cheng Bian, Munan Ning, Nanjun He, Yuexiang Li, Hanruo Liu, Yefeng Zheng. MICCAI 2021
  • Lesion-Based Contrastive Learning for Diabetic Retinopathy Grading from Fundus Images [pdf] [code]

    • Yijin Huang, Li Lin, Pujin Cheng, Junyan Lyu, Xiaoying Tang. MICCAI 2021
  • Lesion-aware transformers for diabetic retinopathy grading [pdf]

    • Rui Sun, Yihao Li, Tianzhu Zhang, Zhendong Mao, Feng Wu, Yongdong Zhang. CVPR 2021
  • Deep Multi-Task Learning for Diabetic Retinopathy Grading in Fundus Images [pdf]

    • Xiaofei Wang, Mai Xu, Jicong Zhang, Lai Jiang, Liu Li. AAAI 2021
  • A deep learning system for detecting diabetic retinopathy across the disease spectrum [pdf] [code]

    • Ling Dai, Liang Wu, Huating Li, Chun Cai, Qiang Wu, et al. Nature Communication 2021

2020

  • Self-Supervised Feature Learning via Exploiting Multi-Modal Data for Retinal Disease Diagnosis [pdf] [code]

    • Xiaomeng Li, Mengyu Jia, Md Tauhidul Islam, Lequan Yu, and Lei Xing TMI 2020
  • Multi-Task Learning for Diabetic Retinopathy Grading and Lesion Segmentation [pdf]

    • Alex Foo, Wynne Hsu, Mong Li Lee, Gilbert Lim, Tien Yin Wong. IAAI 2020
  • A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability [pdf] [code]

    • Yi Zhou, Boyang Wang, Lei Huang, Shanshan Cui, Ling Shao. TMI 2020
  • CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading [pdf] [code]

    • Along He, Tao Li , Ning Li, Kai Wang, and Huazhu Fu. TMI 2020
  • SUNET: A LESION REGULARIZED MODEL FOR SIMULTANEOUS DIABETIC RETINOPATHY AND DIABETIC MACULAR EDEMA GRADING [pdf]

    • Zhi Tu, Shenghua Gao, Kang Zhou, Xianing Chen, Jiang Liu. ISBI 2020

2019

  • Collaborative learning of semi-supervised segmentation and classification for medical images [pdf]

    • Yi Zhou, Xiaodong He, Lei Huang. CVPR 2019
  • CANet: Cross-disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading [pdf] [code]

    • Xiaomeng Li, Xiaowei Hu, Lequan Yu. TMI 2019
  • BIRA-NET: BILINEAR ATTENTION NET FOR DIABETIC RETINOPATHY GRADING [pdf]

    • Ziyuan Zhao, Kerui Zhang, Xuejie Hao, Jing Tian. ICIP 2019

2018

  • Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection [pdf]

    • Zhe Wang, Yanxin Yin, Jianping Shi. MICCAI 2018
  • A Framework for Identifying Diabetic Retinopathy Based on Anti-noise Detection and Attention-Based Fusion [pdf]

    • Zhiwen Lin, Ruoqian Guo, Yanjie Wang. MICCAI 2018
  • Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy [pdf]

    • Jonathan Krause, Varun Gulshan, Ehsan Rahimy. Ophthalmology 2018
  • Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy [pdf]

    • Rory Sayres, Ankur Taly, Ehsan Rahimy. Ophthalmology 2018

2016

  • Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [pdf]
    • Varun Gulshan, Lily Peng, Marc Coram. JAMA 2016

Segmentation

2023

  • Automated lesion segmentation in fundus images with many-to-many reassembly of features [pdf] [code]
    • Qing Liu, Haotian Liu, Wei Ke, Yixiong Liang. PR 2023

2022

  • Progressive Multiscale Consistent Network for Multiclass Fundus Lesion Segmentation [pdf]

    • Along He, Kai Wang, Tao Li, Wang Bo, Hong Kang, Huazhu Fu. TMI 2022
  • RTNet: Relation transformer network for diabetic retinopathy multi-lesion segmentation [pdf]

    • Shiqi Huang, Jianan Li, Yuze Xiao, Ning Shen, Tingfa Xu. TMI 2022
  • SAA: Scale-Aware Attention Block For Multi-Lesion Segmentation Of Fundus Images [pdf]

    • Wang Bo, Tao Li, Xinhui Liu, Kai Wang. ISBI 2022

2020

  • LESION-AWARE SEGMENTATION NETWORK FOR ATROPHY AND DETACHMENT OF PATHOLOGICAL MYOPIA ON FUNDUS IMAGES [pdf]
    • Yan Guo, Rui Wang, Xia Zhou, Yang Liu, Lilong Wang. ISBI 2020

2019

  • DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image Segmentation on Unseen Datasets [pdf]

    • Shujun Wang,Lequan Yu,Kang Li,Xin Yang,Pheng-Ann Heng. TMI 2019
  • CE-Net: Context Encoder Network for 2D Medical Image Segmentation [pdf]

    • Zaiwang Gu, Jun Cheng, Huazhu Fu, Kang Zhou, Huaying Hao, Yitian Zhao, Tianyang Zhang, Shenghua Gao and Jiang Liu. TMI2019
  • Patch-based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation [pdf]

    • Shujun Wang, Lequan Yu, Xin Yang, Chi-Wing Fu, Pheng-Ann Heng. TMI 2019
  • Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation [pdf]

    • Shujun Wang1, Lequan Yu, Kang Li, Xin Yang, Chi-Wing Fu1, Pheng-Ann Heng. MICCAI 2019
  • Attention Guided Network for Retinal Image Segmentation [pdf]

    • Zhang, Shihao,Fu, Huazhu,Yan, Yuguang,Zhang, Yubing,Wu, Qingyao,Yang, Ming,Tan, Mingkui,Xu, Yanwu. MICCAI 2019
  • L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images [pdf] [code]

    • SongGuo, TaoLi, HongKang, NingLi, YujunZhang, KaiWang. Neurocomputing 2019
  • Joint segmentation and classification of retinal arteries/veins from fundus images [pdf]

    • Fantin Girard, Conrad Kavalec, Farida Cheriet. artmed 2019
  • A coarse-to-fine deep learning framework for optic disc segmentationin fundus images [pdf]

    • Wang, Lei,Liu, Han,Lu, Yaling,Chen, Hang,Zhang, Jian,Pu, Jiantao. BSPC 2019

2017

  • Joint Optic Disc and Cup Segmentation Based on Multi-label Deep Network and Polar Transformation [pdf]
    • Huazhu Fu, Jun Cheng, Yanwu Xu, Damon Wing Kee Wong, Jiang Liu, and Xiaochun Cao. TMI 2017

Multimodal

CF & OCT B-scan

  • Geometric Correspondence-Based Multimodal Learning for Ophthalmic Image Analysis [pdf]

    • Yan Wang, Liangli Zhen, Tien-En Tan, Huazhu Fu, Yangqin Feng, Zizhou Wang, Xinxing Xu, Rick Siow Mong Goh, Yipin Ng, Claire Calhoun, Gavin SW Tan, Jennifer K Sun, Yong Liu, Daniel SW Ting. TMI 2024
  • Reliable Multimodality Eye Disease Screening via Mixture of Student’s t Distributions [pdf]

    • Ke Zou, Tian Lin, Xuedong Yuan, Haoyu Chen, Xiaojing Shen, Meng Wang, Huazhu Fu. MICCAI 2023
  • Multi-Modal Multi-Instance Learning for Retinal Disease Recognition [pdf]

    • Xirong Li, Yang Zhou, Jie Wang, Hailan Lin, Jianchun Zhao, Dayong Ding, Weihong Yu, Youxin Chen. ACM MM 2021
  • Multi-Modal Retinal Image Classification With Modality-Specific Attention Network [pdf]

    • Xingxin He, Ying Deng, Leyang Fang, Qinghua Peng. TMI 2021
  • Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization [pdf]

    • Weisen Wang, Zhiyan Xu, Weihong Yu, Jianchun Zhao, Jingyuan Yang, Feng He, Zhikun Yang, Di Chen, Dayong Ding, Youxin Chen, Xirong Li. MICCAI 2019

Enhancement

2023

  • OTRE: Where Optimal Transport Guided Unpaired Image-to-Image Translation Meets Regularization by Enhancing [pdf] [code]

    • Wenhui Zhu, Peijie Qiu, Oana M. Dumitrascu, Jacob M. Sobczak, Mohammad Farazi, Zhangsihao Yang, Keshav Nandakumar, Yalin Wang. IPMI. 2023
  • Optimal Transport Guided Unsupervised Learning for Enhancing low-quality Retinal Images [pdf] [code]

    • Wenhui Zhu, Peijie Qiu, Mohammad Farazi, Keshav Nandakumar, Oana M. Dumitrascu, Yalin Wang. IEEE ISBI 2023
  • Bridging Synthetic and Real Images: a Transferable and Multiple Consistency aided Fundus Image Enhancement Framework [pdf]

    • Erjian Guo, Huazhu Fu, Luping Zhou, Dong Xu. TMI 2023
  • Learning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancement [pdf] [code]

    • Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang.
  • Self-supervised Domain Adaptation for Breaking the Limits of Low-quality Fundus Image Quality Enhancement [pdf]

    • Qingshan Hou, Peng Cao, Jiaqi Wang, Xiaoli Liu, Jinzhu Yang, Osmar R. Zaiane.

2022

  • Image Quality Assessment Guided Collaborative Learning of Image Enhancement and Classification for Diabetic Retinopathy Grading [pdf]

    • Qingshan Hou, Peng Cao, Liyu Jia, Leqi Chen, Jinzhu Yang, Osmar R. Zaiane. JBHI 2022
  • Degradation-invariant Enhancement of Fundus Images via Pyramid Constraint Network [pdf] [code]

    • Haofeng Liu, Heng Li, Huazhu Fu, Ruoxiu Xiao, Yunshu Gao, Yan Hu, Jiang Liu. MICCAI 2022
  • Structure-Consistent Restoration Network for Cataract Fundus Image Enhancement [pdf] [code]

    • Heng Li, Haofeng Liu, Huazhu Fu, Hai Shu, Yitian Zhao, Xiaoling Luo, Yan Hu, Jiang Liu. MICCAI 2022
  • DOMAIN GENERALIZATION IN RESTORATION OF CATARACT FUNDUS IMAGES VIA HIGH-FREQUENCY COMPONENTS [pdf] [code]

    • Haofeng Liu, Heng Li, Mingyang Ou, Yitian Zhao, Hong Qi, Yan Hu, Jiang Liu. ISBI 2022
  • An Annotation-Free Restoration Network for Cataractous Fundus Images [pdf] [code]

    • Heng Li, Haofeng Liu, Yan Hu, Huazhu Fu, Yitian Zhao, Hanpei Miao, Jiang Liu. TMI 2022

2021

  • I-SECRET: Importance-Guided Fundus Image Enhancement via Semi-supervised Contrastive Constraining [pdf] [code]
    • Pujin Cheng, Li Lin, Yijin Huang, Junyan Lyu, Xiaoying Tang. MICCAI 2021

Projects

  • [EyePACS] Identifying the key components in ResNet-50 for diabetic retinopathy grading from fundus images: a systematic investigation

  • [Team o_O] Team o_O solution for the Kaggle Diabetic Retinopathy Detection Challenge

  • [EyeNet] Identifying diabetic retinopathy using convolutional neural networks