transformer
TensorFlow implementation of Attention Is All You Need. (2017. 6)
Requirements
- Python 3.6
- TensorFlow 1.8
- hb-config (Singleton Config)
- nltk (tokenizer and blue score)
- tqdm (progress bar)
- Slack Incoming Webhook URL
Project Structure
init Project by hb-base
.
├── config # Config files (.yml, .json) using with hb-config
├── data # dataset path
├── notebooks # Prototyping with numpy or tf.interactivesession
├── transformer # transformer architecture graphs (from input to logits)
├── __init__.py # Graph logic
├── attention.py # Attention (multi-head, scaled_dot_product and etc..)
├── encoder.py # Encoder logic
├── decoder.py # Decoder logic
└── layer.py # Layers (FFN)
├── data_loader.py # raw_date -> precossed_data -> generate_batch (using Dataset)
├── hook.py # training or test hook feature (eg. print_variables)
├── main.py # define experiment_fn
└── model.py # define EstimatorSpec
Reference : hb-config, Dataset, experiments_fn, EstimatorSpec
Todo
- Train and evaluate with 'WMT German-English (2016)' dataset
Config
Can control all Experimental environment.
example: check-tiny.yml
data:
base_path: 'data/'
raw_data_path: 'tiny_kor_eng'
processed_path: 'tiny_processed_data'
word_threshold: 1
PAD_ID: 0
UNK_ID: 1
START_ID: 2
EOS_ID: 3
model:
batch_size: 4
num_layers: 2
model_dim: 32
num_heads: 4
linear_key_dim: 20
linear_value_dim: 24
ffn_dim: 30
dropout: 0.2
train:
learning_rate: 0.0001
optimizer: 'Adam' ('Adagrad', 'Adam', 'Ftrl', 'Momentum', 'RMSProp', 'SGD')
train_steps: 15000
model_dir: 'logs/check_tiny'
save_checkpoints_steps: 1000
check_hook_n_iter: 100
min_eval_frequency: 100
print_verbose: True
debug: False
slack:
webhook_url: "" # after training notify you using slack-webhook
- debug mode : using tfdbg
check-tiny
is a data set with about 30 sentences that are translated from Korean into English. (recommend read it :) )
Usage
Install requirements.
pip install -r requirements.txt
Then, pre-process raw data.
python data_loader.py --config check-tiny
Finally, start train and evaluate model
python main.py --config check-tiny --mode train_and_evaluate
Or, you can use IWSLT'15 English-Vietnamese dataset.
sh prepare-iwslt15.en-vi.sh # download dataset
python data_loader.py --config iwslt15-en-vi # preprocessing
python main.py --config iwslt15-en-vi --mode train_and_evalueate # start training
Predict
After training, you can test the model.
- command
python predict.py --config {config} --src {src_sentence}
- example
$ python predict.py --config check-tiny --src "안녕하세요. 반갑습니다."
------------------------------------
Source: 안녕하세요. 반갑습니다.
> Result: Hello . I'm glad to see you . <\s> vectors . <\s> Hello locations . <\s> will . <\s> . <\s> you . <\s>
Experiments modes
✅ evaluate
: Evaluate on the evaluation data.â—½ extend_train_hooks
: Extends the hooks for training.â—½ reset_export_strategies
: Resets the export strategies with the new_export_strategies.â—½ run_std_server
: Starts a TensorFlow server and joins the serving thread.â—½ test
: Tests training, evaluating and exporting the estimator for a single step.✅ train
: Fit the estimator using the training data.✅ train_and_evaluate
: Interleaves training and evaluation.
Tensorboar
tensorboard --logdir logs
- check-tiny example
Reference
- hb-research/notes - Attention Is All You Need
- Paper - Attention Is All You Need (2017. 6) by A Vaswani (Google Brain Team)
- tensor2tensor - A library for generalized sequence to sequence models (official code)
Author
Dongjun Lee ([email protected])