• Stars
    star
    2,177
  • Rank 21,186 (Top 0.5 %)
  • Language
    C#
  • License
    MIT License
  • Created 12 months ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The new future of dotnet/reactive and UniRx.

R3

The new future of dotnet/reactive and UniRx, which support many platforms including Unity, Godot, Avalonia, WPF, WinForms, WinUI3, Stride, LogicLooper, MAUI, MonoGame, Blazor.

I have over 10 years of experience with Rx, experience in implementing a custom Rx runtime (UniRx) for game engine, and experience in implementing an asynchronous runtime (UniTask) for game engine. Based on those experiences, I came to believe that there is a need to implement a new Reactive Extensions for .NET, one that reflects modern C# and returns to the core values of Rx.

  • Stopping the pipeline at OnError is a billion-dollar mistake.
  • IScheduler is the root of poor performance.
  • Frame-based operations, a missing feature in Rx, are especially important in game engines.
  • Single asynchronous operations should be entirely left to async/await.
  • Synchronous APIs should not be implemented.
  • Query syntax is a bad notation except for SQL.
  • The Necessity of a subscription list to prevent subscription leaks (similar to a Parallel Debugger)
  • Backpressure should be left to IAsyncEnumerable and Channels.
  • For distributed processing and queries, there are GraphQL, Kubernetes, Orleans, Akka.NET, gRPC, MagicOnion.

In other words, LINQ is not for EveryThing, and we believe that the essence of Rx lies in the processing of in-memory messaging (LINQ to Events), which will be our focus. We are not concerned with communication processes like Reactive Streams.

To address the shortcomings of dotnet/reactive, we have made changes to the core interfaces. In recent years, Rx-like frameworks optimized for language features, such as Kotlin Flow and Swift Combine, have been standardized. C# has also evolved significantly, now at C# 12, and we believe there is a need for an Rx that aligns with the latest C#.

Improving performance was also a theme in the reimplementation. For example, this is the result of the terrible performance of IScheduler and the performance difference caused by its removal.

image Observable.Range(1, 10000).Subscribe()

You can also see interesting results in allocations with the addition and deletion to Subject.

image x10000 subject.Subscribe() -> x10000 subscription.Dispose()

This is because dotnet/reactive has adopted ImmutableArray (or its equivalent) for Subject, which results in the allocation of a new array every time one is added or removed. Depending on the design of the application, a large number of subscriptions can occur (we have seen this especially in the complexity of games), which can be a critical issue. In R3, we have devised a way to achieve high performance while avoiding ImmutableArray.

For those interested in learning more about the implementation philosophy and comparisons, please refer to my blog article R3 โ€” A New Modern Reimplementation of Reactive Extensions for C#.

Core Interface

This library is distributed via NuGet, supporting .NET Standard 2.0, .NET Standard 2.1, .NET 6(.NET 7) and .NET 8 or above.

PM> Install-Package R3

Some platforms(WPF, Avalonia, Unity, Godot) requires additional step to install. Please see Platform Supports section in below.

R3 code is mostly the same as standard Rx. Make the Observable via factory methods(Timer, Interval, FromEvent, Subject, etc...) and chain operator via LINQ methods. Therefore, your knowledge about Rx and documentation on Rx can be almost directly applied. If you are new to Rx, the ReactiveX website and Introduction to Rx.NET would be useful resources for reference.

using R3;

var subscription = Observable.Interval(TimeSpan.FromSeconds(1))
    .Select((_, i) => i)
    .Where(x => x % 2 == 0)
    .Subscribe(x => Console.WriteLine($"Interval:{x}"));

var cts = new CancellationTokenSource();
_ = Task.Run(() => { Console.ReadLine(); cts.Cancel(); });

await Observable.Timer(TimeSpan.FromSeconds(1), TimeSpan.FromSeconds(3))
    .TakeUntil(cts.Token)
    .ForEachAsync(x => Console.WriteLine($"Timer"));

subscription.Dispose();

The surface API remains the same as normal Rx, but the interfaces used internally are different and are not IObservable<T>/IObserver<T>.

IObservable<T> being the dual of IEnumerable<T> is a beautiful definition, but it was not very practical in use.

public abstract class Observable<T>
{
    public IDisposable Subscribe(Observer<T> observer);
}

public abstract class Observer<T> : IDisposable
{
    public void OnNext(T value);
    public void OnErrorResume(Exception error);
    public void OnCompleted(Result result); // Result is (Success | Failure)
}

The biggest difference is that in normal Rx, when an exception occurs in the pipeline, it flows to OnError and the subscription is unsubscribed, but in R3, it flows to OnErrorResume and the subscription is not unsubscribed.

I consider the automatic unsubscription by OnError to be a bad design for event handling. It's very difficult and risky to resolve it within an operator like Retry, and it also led to poor performance (there are many questions and complex answers about stopping and resubscribing all over the world). Also, converting OnErrorResume to OnError(OnCompleted(Result.Failure)) is easy and does not degrade performance, but the reverse is impossible. Therefore, the design was changed to not stop by default and give users the choice to stop.

Since the original Rx contract was OnError | OnCompleted, it was changed to OnCompleted(Result result) to consolidate into one method. Result is a readonly struct with two states: Success() | Failure(Exception).

The reason for changing to an abstract class instead of an interface is that Rx has implicit complex contracts that interfaces do not guarantee. By making it an abstract class, we fully controlled the behavior of Subscribe, OnNext, and Dispose. This made it possible to manage the list of all subscriptions and prevent subscription leaks.

image

Subscription leaks are a common problem in applications with long lifecycles, such as GUIs or games. Tracking all subscriptions makes it easy to prevent leaks.

Internally, when subscribing, an Observer is always linked to the target Observable and doubles as a Subscription. This ensures that Observers are reliably connected from top to bottom, making tracking certain and clear that they are released on OnCompleted/Dispose. In terms of performance, because the Observer itself always becomes a Subscription, there is no need for unnecessary IDisposable allocations.

TimeProvider instead of IScheduler

In traditional Rx, IScheduler was used as an abstraction for time-based processing, but in R3, we have discontinued its use and instead opted for the TimeProvider introduced in .NET 8. For example, the operators are defined as follows:

public static Observable<Unit> Interval(TimeSpan period, TimeProvider timeProvider);
public static Observable<T> Delay<T>(this Observable<T> source, TimeSpan dueTime, TimeProvider timeProvider)
public static Observable<T> Debounce<T>(this Observable<T> source, TimeSpan timeSpan, TimeProvider timeProvider) // same as Throttle in dotnet/reactive

Originally, IScheduler had performance issues, and the internal implementation of dotnet/reactive was peppered with code that circumvented these issues using PeriodicTimer and IStopwatch, leading to unnecessary complexity. These can be better expressed with TimeProvider (TimeProvider.CreateTimer(), TimeProvider.GetTimestamp()).

While TimeProvider is an abstraction for asynchronous operations, excluding the Fake for testing purposes, IScheduler included synchronous schedulers like ImmediateScheduler and CurrentThreadScheduler. However, these were also meaningless as applying them to time-based operators would cause blocking, and CurrentThreadScheduler had poor performance.

image Observable.Range(1, 10000).Subscribe()

In R3, anything that requires synchronous execution (like Range) is treated as Immediate, and everything else is considered asynchronous and handled through TimeProvider.

As for the implementation of TimeProvider, the standard TimeProvider.System using the ThreadPool is the default. For unit testing, FakeTimeProvider (Microsoft.Extensions.TimeProvider.Testing) is available. Additionally, many TimeProvider implementations are provided for different platforms, such as DispatcherTimerProvider for WPF and UpdateTimerProvider for Unity, enhancing ease of use tailored to each platform.

Frame based operations

In GUI applications, there's the message loop, and in game engines, there's the game loop. Platforms that operate based on loops are not uncommon. The idea of executing something after a few seconds or frames fits very well with Rx. Just as time has been abstracted through TimeProvider, we introduced a layer of abstraction for frames called FrameProvider, and added frame-based operators corresponding to all methods that accept TimeProvider.

public static Observable<Unit> IntervalFrame(int periodFrame, FrameProvider frameProvider);
public static Observable<T> DelayFrame<T>(this Observable<T> source, int frameCount, FrameProvider frameProvider)
public static Observable<T> DebounceFrame<T>(this Observable<T> source, int frameCount, FrameProvider frameProvider)

The effectiveness of frame-based processing has been proven in Unity's Rx implementation, neuecc/UniRx, which is one of the reasons why UniRx has gained strong support.

There are also several operators unique to frame-based processing.

// push OnNext every frame.
Observable.EveryUpdate().Subscribe(x => Console.WriteLine(x));

// take value until next frame
eventSoure.TakeUntil(Observable.NextFrame()).Subscribe();

// polling value changed
Observable.EveryValueChanged(this, x => x.Width).Subscribe(x => WidthText.Text = x.ToString());
Observable.EveryValueChanged(this, x => x.Height).Subscribe(x => HeightText.Text = x.ToString());

EveryValueChanged could be interesting, as it converts properties without Push-based notifications like INotifyPropertyChanged.

`

Subjects(ReactiveProperty)

In R3, there are four types of Subjects: Subject, ReactiveProperty, ReplaySubject, and ReplayFrameSubject. ReactiveProperty corresponds to what would be a BehaviorSubject, but with the added functionality of eliminating duplicate values. Since you can choose to enable or disable duplicate elimination, it effectively becomes a superior alternative to BehaviorSubject, leading to the removal of BehaviorSubject.

ReactiveProperty has equivalents in other frameworks as well, such as Android LiveData and Kotlin StateFlow, particularly effective for data binding in UI contexts. In .NET, there is a library called runceel/ReactiveProperty, which I originally created.

Unlike dotnet/reactive's Subject, all Subjects in R3 (Subject, ReactiveProperty, ReplaySubject, ReplayFrameSubject) are designed to call OnCompleted upon disposal. This is because R3 is designed with a focus on subscription management and unsubscription. By calling OnCompleted, it ensures that all subscriptions are unsubscribed from the Subject, the upstream source of events, by default. If you wish to avoid calling OnCompleted, you can do so by calling Dispose(false).

ReactiveProperty is mutable, but it can be converted to a read-only ReadOnlyReactiveProperty. Following the guidance for the Android UI Layer, the Kotlin code below is

class NewsViewModel(...) : ViewModel() {

    private val _uiState = MutableStateFlow(NewsUiState())
    val uiState: StateFlow<NewsUiState> = _uiState.asStateFlow()
    ...
}

can be adapted to the following R3 code.

class NewsViewModel
{
    ReactiveProperty<NewsUiState> _uiState = new(new NewsUiState());
    public ReadOnlyReactiveProperty<NewsUiState> UiState => _uiState;
}

In R3, we use a combination of a mutable private field and a readonly public property.

By inheriting ReactiveProperty and overriding OnValueChanging and OnValueChanged, you can customize behavior, such as adding validation.

// Since the primary constructor sets values to fields before calling base, it is safe to call OnValueChanging in the base constructor.
public sealed class ClampedReactiveProperty<T>(T initialValue, T min, T max)
    : ReactiveProperty<T>(initialValue) where T : IComparable<T>
{
    private static IComparer<T> Comparer { get; } = Comparer<T>.Default;

    protected override void OnValueChanging(ref T value)
    {
        if (Comparer.Compare(value, min) < 0)
        {
            value = min;
        }
        else if (Comparer.Compare(value, max) > 0)
        {
            value = max;
        }
    }
}

// For regular constructors, please set `callOnValueChangeInBaseConstructor` to false and manually call it once to correct the value.
public sealed class ClampedReactiveProperty2<T>
    : ReactiveProperty<T> where T : IComparable<T>
{
    private static IComparer<T> Comparer { get; } = Comparer<T>.Default;

    readonly T min, max;

    // callOnValueChangeInBaseConstructor to avoid OnValueChanging call before min, max set.
    public ClampedReactiveProperty2(T initialValue, T min, T max)
        : base(initialValue, EqualityComparer<T>.Default, callOnValueChangeInBaseConstructor: false)
    {
        this.min = min;
        this.max = max;

        // modify currentValue manually
        OnValueChanging(ref GetValueRef());
    }

    protected override void OnValueChanging(ref T value)
    {
        if (Comparer.Compare(value, min) < 0)
        {
            value = min;
        }
        else if (Comparer.Compare(value, max) > 0)
        {
            value = max;
        }
    }
}

Additionally, ReactiveProperty supports serialization with System.Text.JsonSerializer in .NET 6 and above. For earlier versions, you need to implement ReactivePropertyJsonConverterFactory under the existing implementation and add it to the Converter.

Disposable

To bundle multiple IDisposables (Subscriptions), it's good to use Disposable's methods. In R3, depending on the performance,

Disposable.Combine(IDisposable d1, ..., IDisposable d8);
Disposable.Combine(params IDisposable[]);
Disposable.CreateBuilder();
CompositeDisposable
DisposableBag

five types are available for use. In terms of performance advantages, the order is Combine(d1,...,d8) (>= CreateBuilder) > Combine(IDisposable[]) >= CreateBuilder > DisposableBag > CompositeDisposable.

When the number of subscriptions is statically determined, Combine offers the best performance. Internally, for less than 8 arguments, it uses fields, and for 9 or more arguments, it uses an array, making Combine especially efficient for 8 arguments or less.

public partial class MainWindow : Window
{
    IDisposable disposable;

    public MainWindow()
    {
        var d1 = Observable.IntervalFrame(1).Subscribe();
        var d2 = Observable.IntervalFrame(1).Subscribe();
        var d3 = Observable.IntervalFrame(1).Subscribe();

        disposable = Disposable.Combine(d1, d2, d3);
    }

    protected override void OnClosed(EventArgs e)
    {
        disposable.Dispose();
    }
}

If there are many subscriptions and it's cumbersome to hold each one in a variable, CreateBuilder can be used instead. At build time, it combines according to the number of items added to it. Since the Builder itself is a struct, there are no allocations.

public partial class MainWindow : Window
{
    IDisposable disposable;

    public MainWindow()
    {
        var d = Disposable.CreateBuilder();
        Observable.IntervalFrame(1).Subscribe().AddTo(ref d);
        Observable.IntervalFrame(1).Subscribe().AddTo(ref d);
        Observable.IntervalFrame(1).Subscribe().AddTo(ref d);

        disposable = d.Build();
    }

    protected override void OnClosed(EventArgs e)
    {
        disposable.Dispose();
    }
}

For dynamically added items, using DisposableBag is advisable. This is an add-only struct with only Add/Clear/Dispose methods. It can be used relatively quickly and with low allocation by holding it in a class field and passing it around by reference. However, it is not thread-safe.

public partial class MainWindow : Window
{
    DisposableBag disposable; // DisposableBag is struct, no need new and don't copy

    public MainWindow()
    {
        Observable.IntervalFrame(1).Subscribe().AddTo(ref disposable);
        Observable.IntervalFrame(1).Subscribe().AddTo(ref disposable);
        Observable.IntervalFrame(1).Subscribe().AddTo(ref disposable);
    }

    void OnClick()
    {
        Observable.IntervalFrame(1).Subscribe().AddTo(ref disposable);
    }

    protected override void OnClosed(EventArgs e)
    {
        disposable.Dispose();
    }
}

CompositeDisposable is a class that also supports Remove and is thread-safe. It is the most feature-rich, but comparatively, it has the lowest performance.

public partial class MainWindow : Window
{
    CompositeDisposable disposable = new CompositeDisposable();

    public MainWindow()
    {
        Observable.IntervalFrame(1).Subscribe().AddTo(disposable);
        Observable.IntervalFrame(1).Subscribe().AddTo(disposable);
        Observable.IntervalFrame(1).Subscribe().AddTo(disposable);
    }

    void OnClick()
    {
        Observable.IntervalFrame(1).Subscribe().AddTo(disposable);
    }

    protected override void OnClosed(EventArgs e)
    {
        disposable.Dispose();
    }
}

Additionally, there are other utilities for Disposables as follows.

Disposable.Create(Action);
Disposable.Dispose(...);
SingleAssignmentDisposable
SingleAssignmentDisposableCore // struct
SerialDisposable
SerialDisposableCore // struct

Subscription Management

Managing subscriptions is one of the most crucial aspects of Rx, and inadequate management can lead to memory leaks. There are two patterns for unsubscribing in Rx. One is by disposing of the IDisposable (Subscription) returned by Subscribe. The other is by receiving OnCompleted.

In R3, to enhance subscription cancellation on both fronts, it's now possible to bundle subscriptions using a variety of Disposable classes for Subscriptions, and for OnCompleted, the upstream side of events (such as Subject or Factory) has been made capable of emitting OnCompleted. Especially, Factories that receive a TimeProvider or FrameProvider can now take a CancellationToken.

public static Observable<Unit> Interval(TimeSpan period, TimeProvider timeProvider, CancellationToken cancellationToken)
public static Observable<Unit> EveryUpdate(FrameProvider frameProvider, CancellationToken cancellationToken)

When cancelled, OnCompleted is sent, and all subscriptions are unsubscribed.

ObservableTracker

R3 incorporates a system called ObservableTracker. When activated, it allows you to view all subscription statuses.

ObservableTracker.EnableTracking = true; // default is false
ObservableTracker.EnableStackTrace = true;

using var d = Observable.Interval(TimeSpan.FromSeconds(1))
    .Where(x => true)
    .Take(10000)
    .Subscribe();

// check subscription
ObservableTracker.ForEachActiveTask(x =>
{
    Console.WriteLine(x);
});
TrackingState { TrackingId = 1, FormattedType = Timer._Timer, AddTime = 2024/01/09 4:11:39, StackTrace =... }
TrackingState { TrackingId = 2, FormattedType = Where`1._Where<Unit>, AddTime = 2024/01/09 4:11:39, StackTrace =... }
TrackingState { TrackingId = 3, FormattedType = Take`1._Take<Unit>, AddTime = 2024/01/09 4:11:39, StackTrace =... }

Besides directly calling ForEachActiveTask, making it more accessible through a GUI can make it easier to check for subscription leaks. Currently, there is an integrated GUI for Unity, and there are plans to provide a screen using Blazor for other platforms.

ObservableSystem, UnhandledExceptionHandler

For time-based operators that do not specify a TimeProvider or FrameProvider, the default Provider of ObservableSystem is used. This is settable, so if there is a platform-specific Provider (for example, DispatcherTimeProvider in WPF), you can swap it out to create a more user-friendly environment.

public static class ObservableSystem
{
    public static TimeProvider DefaultTimeProvider { get; set; } = TimeProvider.System;
    public static FrameProvider DefaultFrameProvider { get; set; } = new NotSupportedFrameProvider();

    static Action<Exception> unhandledException = DefaultUnhandledExceptionHandler;

    // Prevent +=, use Set and Get method.
    public static void RegisterUnhandledExceptionHandler(Action<Exception> unhandledExceptionHandler)
    {
        unhandledException = unhandledExceptionHandler;
    }

    public static Action<Exception> GetUnhandledExceptionHandler()
    {
        return unhandledException;
    }

    static void DefaultUnhandledExceptionHandler(Exception exception)
    {
        Console.WriteLine("R3 UnhandleException: " + exception.ToString());
    }
}

In CUI environments, by default, the FrameProvider will throw an exception. If you want to use FrameProvider in a CUI environment, you can set either NewThreadSleepFrameProvider, which sleeps in a new thread for a specified number of seconds, or TimerFrameProvider, which executes every specified number of seconds.

UnhandledExceptionHandler

When an exception passes through OnErrorResume and is not ultimately handled by Subscribe, the UnhandledExceptionHandler of ObservableSystem is called. This can be set with RegisterUnhandledExceptionHandler. By default, it writes to Console.WriteLine, but it may need to be changed to use ILogger or something else as required.

Result Handling

The Result received by OnCompleted has a field Exception?, where it's null in case of success and contains the Exception in case of failure.

// Typical processing code example
void OnCompleted(Result result)
{
    if (result.IsFailure)
    {
        // do failure
        _ = result.Exception;
    }
    else // result.IsSuccess
    {
        // do success
    }
}

To generate a Result, in addition to using Result.Success and Result.Failure(exception), Observer has OnCompleted() and OnCompleted(exception) as shortcuts for Success and Failure, respectively.

observer.OnCompleted(Result.Success);
observer.OnCompleted(Result.Failure(exception));

observer.OnCompleted(); // same as Result.Success
observer.OnCompleted(exception); // same as Result.Failure(exception)

Unit Testing

For unit testing, you can use FakeTimeProvider of Microsoft.Extensions.TimeProvider.Testing.

Additionally, in R3, there is a collection called LiveList, which allows you to obtain subscription statuses as a list. Combining these two features can be very useful for unit testing.

var fakeTime = new FakeTimeProvider();

var list = Observable.Timer(TimeSpan.FromSeconds(5), fakeTime).ToLiveList();

fakeTime.Advance(TimeSpan.FromSeconds(4));
list.AssertIsNotCompleted();

fakeTime.Advance(TimeSpan.FromSeconds(1));
list.AssertIsCompleted();
list.AssertEqual([Unit.Default]);

For FrameProvider, a FakeFrameProvider is provided as standard, and it can be used in the same way as FakeTimeProvider.

var cts = new CancellationTokenSource();
var frameProvider = new FakeFrameProvider();

var list = Observable.EveryUpdate(frameProvider, cts.Token)
    .Select(_ => frameProvider.GetFrameCount())
    .ToLiveList();

list.AssertEqual([]); // list.Should().Equal(expected);

frameProvider.Advance();
list.AssertEqual([0]);

frameProvider.Advance(3);
list.AssertEqual([0, 1, 2, 3]);

cts.Cancel();
list.AssertIsCompleted(); // list.IsCompleted.Should().BeTrue();

frameProvider.Advance();
list.AssertEqual([0, 1, 2, 3]);
list.AssertIsCompleted();

Interoperability with IObservable<T>

Observable<T> is not IObservable<T>. You can convert both by these methods.

  • public static Observable<T> ToObservable<T>(this IObservable<T> source)
  • public static IObservable<T> AsSystemObservable<T>(this Observable<T> source)

Interoperability with async/await

R3 has special integration with async/await. First, all methods that return a single asynchronous operation have now become ***Async methods, returning Task<T>.

Furthermore, you can specify special behaviors when asynchronous methods are provided to Where/Select/Subscribe.

Name ReturnType
SelectAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask<TResult>> selector, AwaitOperation awaitOperation = AwaitOperation.Sequential, bool configureAwait = true, bool cancelOnCompleted = true, int maxConcurrent = -1) Observable<TResult>
WhereAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask<Boolean>> predicate, AwaitOperation awaitOperation = AwaitOperation.Sequential, bool configureAwait = true, bool cancelOnCompleted = true, int maxConcurrent = -1) Observable<T>
SubscribeAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask> onNextAsync, AwaitOperation awaitOperation = AwaitOperation.Sequential, bool configureAwait = true, bool cancelOnCompleted = true, int maxConcurrent = -1) IDisposable
SubscribeAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask> onNextAsync, Action<Result> onCompleted, AwaitOperation awaitOperation = AwaitOperation.Sequential, bool configureAwait = true, bool cancelOnCompleted = true, int maxConcurrent = -1) IDisposable
SubscribeAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask> onNextAsync, Action<Exception> onErrorResume, Action<Result> onCompleted, AwaitOperation awaitOperation = AwaitOperation.Sequential, bool configureAwait = true, bool cancelOnCompleted = true, int maxConcurrent = -1) IDisposable
public enum AwaitOperation
{
    /// <summary>All values are queued, and the next value waits for the completion of the asynchronous method.</summary>
    Sequential,
    /// <summary>Drop new value when async operation is running.</summary>
    Drop,
    /// <summary>If the previous asynchronous method is running, it is cancelled and the next asynchronous method is executed.</summary>
    Switch,
    /// <summary>All values are sent immediately to the asynchronous method.</summary>
    Parallel,
    /// <summary>All values are sent immediately to the asynchronous method, but the results are queued and passed to the next operator in order.</summary>
    SequentialParallel,
    /// <summary>Send the first value and the last value while the asynchronous method is running.</summary>
    ThrottleFirstLast
}
// for example...
// Drop enables prevention of execution by multiple clicks
button.OnClickAsObservable()
    .SelectAwait(async (_, ct) =>
    {
        var req = await UnityWebRequest.Get("https://google.com/").SendWebRequest().WithCancellation(ct);
        return req.downloadHandler.text;
    }, AwaitOperation.Drop)
    .SubscribeToText(text);

maxConcurrent is only effective for Parallel and SequentialParallel, allowing control over the number of parallel operations. By default, it allows unlimited parallelization.

cancelOnCompleted lets you choose whether to cancel the ongoing asynchronous method (by setting CancellationToken to Cancel) when the OnCompleted event is received. The default is true, meaning it will be cancelled. If set to false, it waits for the completion of the asynchronous method before calling the subsequent OnCompleted (potentially after issuing OnNext, depending on the case).

Additionally, the following time-related filtering/aggregating methods can also accept asynchronous methods.

Name ReturnType
Debounce(this Observable<T> source, Func<T, CancellationToken, ValueTask> throttleDurationSelector, Boolean configureAwait = true) Observable<T>
ThrottleFirst(this Observable<T> source, Func<T, CancellationToken, ValueTask> sampler, Boolean configureAwait = true) Observable<T>
ThrottleLast(this Observable<T> source, Func<T, CancellationToken, ValueTask> sampler, Boolean configureAwait = true) Observable<T>
ThrottleFirstLast(this Observable<T> source, Func<T, CancellationToken, ValueTask> sampler, Boolean configureAwait = true) Observable<T>
SkipUntil(this Observable<T> source, CancellationToken cancellationToken) Observable<T>
SkipUntil(this Observable<T> source, Task task) Observable<T>
SkipUntil(this Observable<T> source, Func<T, CancellationToken, ValueTask> asyncFunc, Boolean configureAwait = true) Observable<T>
TakeUntil(this Observable<T> source, CancellationToken cancellationToken) Observable<T>
TakeUntil(this Observable<T> source, Task task) Observable<T>
TakeUntil(this Observable<T> source, Func<T, CancellationToken, ValueTask> asyncFunc, Boolean configureAwait = true) Observable<T>
Chunk(this Observable<T> source, Func<T, CancellationToken, ValueTask> asyncWindow, Boolean configureAwait = true) Observable<T[]>

For example, by using the asynchronous function version of Chunk, you can naturally and easily write complex processes such as generating chunks at random times instead of fixed times.

Observable.Interval(TimeSpan.FromSeconds(1))
    .Index()
    .Chunk(async (_, ct) =>
    {
        await Task.Delay(TimeSpan.FromSeconds(Random.Shared.Next(0, 5)), ct);
    })
    .Subscribe(xs =>
    {
        Console.WriteLine(string.Join(", ", xs));
    });

These asynchronous methods are immediately canceled when OnCompleted is issued, and the subsequent OnCompleted is executed.

By utilizing async/await for Retry-related operations, you can achieve better handling. For instance, whereas the previous version of Rx could only retry the entire pipeline, with R3, which accepts async/await, it is possible to retry on a per asynchronous method execution basis.

button.OnClickAsObservable()
    .SelectAwait(async (_, ct) =>
    {
        var retry = 0;
    AGAIN:
        try
        {
            var req = await UnityWebRequest.Get("https://google.com/").SendWebRequest().WithCancellation(ct);
            return req.downloadHandler.text;
        }
        catch
        {
            if (retry++ < 3) goto AGAIN;
            throw;
        }
    }, AwaitOperation.Drop)

Repeat can also be implemented in combination with async/await. In this case, handling complex conditions for Repeat might be easier than completing it with Rx alone.

while (!ct.IsCancellationRequested)
{
    await button.OnClickAsObservable()
        .Take(1)
        .ForEachAsync(_ =>
        {
            // do something
        });
}

Concurrency Policy

The composition of operators is thread-safe, and it is expected that the values flowing through OnNext are on a single thread. In other words, if OnNext is issued on multiple threads, the operators may behave unexpectedly. This is the same as with dotnet/reactive.

For example, while Subject itself is thread-safe, the operators are not thread-safe.

// dotnet/reactive
var subject = new System.Reactive.Subjects.Subject<int>();

// single execution shows 100 but actually 9* multiple times(broken)
subject.Take(100).Count().Subscribe(x => Console.WriteLine(x));

Parallel.For(0, 1000, new ParallelOptions { MaxDegreeOfParallelism = 10 }, x => subject.OnNext(x));

This means that the issuance of OnNext must always be done on a single thread. Also, ReactiveProperty, which corresponds to BehaviorSubject in dotnet/reactive, is not thread-safe itself, so updating the value (set Value or call OnNext) must always be done on a single thread.

For converting external inputs into Observables, such as with FromEvent, and when the source of input issues in a multi-threaded manner, it is necessary to synchronize using Synchronize to construct the correct operator chain.

Sampling Timing

The Sample(TimeSpan) in dotnet/reactive starts a timer in the background when subscribed to, and uses that interval for filtering. Additionally, the timer continues to run in the background indefinitely.

ThrottleFirst/Last/FirstLast(TimeSpan) in R3 behaves differently; the timer is stopped upon subscription and only starts when a value arrives. If the timer is stopped at that time, it starts, and then stops the timer after the specified duration.

Also, overloads that accept an asynchronous function Func<T, CancellationToken, ValueTask>, such as ThrottleFirst/Last/FirstLast, Chunk, SkipUntil, TakeUntil), behave in such a way that if the asynchronous function is not running when a value arrives, the execution of the asynchronous function begins.

This change is expected to result in consistent behavior across all operators.

ObservableCollections

As a special collection for monitoring changes in collections and handling them in R3, the ObservableCollections's ObservableCollections.R3 package is available.

It has ObservableList<T>, ObservableDictionary<TKey, TValue>, ObservableHashSet<T>, ObservableQueue<T>, ObservableStack<T>, ObservableRingBuffer<T>, ObservableFixedSizeRingBuffer<T> and these observe methods.

Observable<CollectionAddEvent<T>> IObservableCollection<T>.ObserveAdd()
Observable<CollectionRemoveEvent<T>> IObservableCollection<T>.ObserveRemove()
Observable<CollectionReplaceEvent<T>> IObservableCollection<T>.ObserveReplace()
Observable<CollectionMoveEvent<T>> IObservableCollection<T>.ObserveMove()
Observable<CollectionResetEvent<T>> IObservableCollection<T>.ObserveReset()

XAML Platforms(BindableReactiveProperty<T>)

For XAML based application platforms, R3 provides BindableReactiveProperty<T> that can bind observable property to view like Android LiveData and Kotlin StateFlow. It implements INotifyPropertyChanged and INotifyDataErrorInfo.

Simple usage, expose BindableReactiveProperty<T> via new or ToBindableReactiveProperty.

Here is the simple In and Out BindableReactiveProperty ViewModel, Xaml and code-behind. In xaml, .Value to bind property.

public class BasicUsagesViewModel : IDisposable
{
    public BindableReactiveProperty<string> Input { get; }
    public BindableReactiveProperty<string> Output { get; }

    public BasicUsagesViewModel()
    {
        Input = new BindableReactiveProperty<string>("");
        Output = Input.Select(x => x.ToUpper()).ToBindableReactiveProperty("");
    }

    public void Dispose()
    {
        Disposable.Dispose(Input, Output);
    }
}
<Window x:Class="WpfApp1.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:WpfApp1"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Window.DataContext>
        <local:BasicUsagesViewModel />
    </Window.DataContext>
    <StackPanel>
        <TextBlock Text="Basic usages" FontSize="24" />

        <Label Content="Input" />
        <TextBox Text="{Binding Input.Value, UpdateSourceTrigger=PropertyChanged}" />

        <Label Content="Output" />
        <TextBlock Text="{Binding Output.Value}" />
    </StackPanel>
</Window>
namespace WpfApp1;

public partial class MainWindow : Window
{
    public MainWindow()
    {
        InitializeComponent();
    }

    protected override void OnClosed(EventArgs e)
    {
        (this.DataContext as IDisposable)?.Dispose();
    }
}

image

BindableReactiveProperty also supports validation via DataAnnotation or custom logic. If you want to use DataAnnotation attribute, require to call EnableValidation<T>() in field initializer or EnableValidation(Expression selfSelector) in constructor.

public class ValidationViewModel : IDisposable
{
    // Pattern 1. use EnableValidation<T> to enable DataAnnotation validation in field initializer
    [Range(0.0, 300.0)]
    public BindableReactiveProperty<double> Height { get; } = new BindableReactiveProperty<double>().EnableValidation<ValidationViewModel>();

    [Range(0.0, 300.0)]
    public BindableReactiveProperty<double> Weight { get; }

    IDisposable customValidation1Subscription;
    public BindableReactiveProperty<double> CustomValidation1 { get; set; }

    public BindableReactiveProperty<double> CustomValidation2 { get; set; }

    public ValidationViewModel()
    {
        // Pattern 2. use EnableValidation(Expression) to enable DataAnnotation validation
        Weight = new BindableReactiveProperty<double>().EnableValidation(() => Weight);

        // Pattern 3. EnableValidation() and call OnErrorResume to set custom error meessage
        CustomValidation1 = new BindableReactiveProperty<double>().EnableValidation();
        customValidation1Subscription = CustomValidation1.Subscribe(x =>
        {
            if (0.0 <= x && x <= 300.0) return;

            CustomValidation1.OnErrorResume(new Exception("value is not in range."));
        });

        // Pattern 4. simplified version of Pattern3, EnableValidation(Func<T, Exception?>)
        CustomValidation2 = new BindableReactiveProperty<double>().EnableValidation(x =>
        {
            if (0.0 <= x && x <= 300.0) return null; // null is no validate result
            return new Exception("value is not in range.");
        });
    }

    public void Dispose()
    {
        Disposable.Dispose(Height, Weight, CustomValidation1, customValidation1Subscription, CustomValidation2);
    }
}
<Window x:Class="WpfApp1.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:WpfApp1"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Window.DataContext>
        <local:ValidationViewModel />
    </Window.DataContext>

    <StackPanel Margin="10">
        <Label Content="Validation" />
        <TextBox Text="{Binding Height.Value, UpdateSourceTrigger=PropertyChanged}"  />
        <TextBox  Text="{Binding Weight.Value, UpdateSourceTrigger=PropertyChanged}" />
        <TextBox  Text="{Binding CustomValidation1.Value, UpdateSourceTrigger=PropertyChanged}" />
        <TextBox  Text="{Binding CustomValidation2.Value, UpdateSourceTrigger=PropertyChanged}" />
    </StackPanel>
</Window>

image

ReactiveCommand

ReactiveCommand<T> is observable ICommand implementation. It can create from Observable<bool> canExecuteSource.

public class CommandViewModel : IDisposable
{
    public BindableReactiveProperty<bool> OnCheck { get; } // bind to CheckBox
    public ReactiveCommand<Unit> ShowMessageBox { get; }   // bind to Button

    public CommandViewModel()
    {
        OnCheck = new BindableReactiveProperty<bool>();
        ShowMessageBox = OnCheck.ToReactiveCommand(_ =>
        {
            MessageBox.Show("clicked");
        });
    }

    public void Dispose()
    {
        Disposable.Combine(OnCheck, ShowMessageBox);
    }
}
<Window x:Class="WpfApp1.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:WpfApp1"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Window.DataContext>
        <local:CommandViewModel />
    </Window.DataContext>
    <StackPanel Margin="10">
        <Label Content="Command" />
        <CheckBox IsChecked="{Binding OnCheck.Value}" />
        <Button Content="Btn" Command="{Binding ShowMessageBox}" />
    </StackPanel>
</Window>

rpcommand

INotifyPropertyChanged to Observable

To convert properties of INotifyPropertyChanged and INotifyPropertyChanging into Observables, you can use ObservePropertyChanged and ObservePropertyChanging.

var person = new Person { Name = "foo" };

person.ObservePropertyChanged(x => x.Name)
      .Subscribe(x => Console.WriteLine($"Changed:{x}"));

p.Name = "bar";
p.Name = "baz";

Func<T, TProperty> propertySelector only supports simple property name lambda. This is because, in R3, CallerArgumentExpression is used to extract, for example from x => x.Name to "Name".

FromEvent

To convert existing events into Observables, use FromEvent. Because it requires the conversion of delegates and has a unique way of calling, please refer to the following sample.

Observable.FromEvent<RoutedEventHandler, RoutedEventArgs>(
    h => (sender, e) => h(e),
    e => button.Click += e,
    e => button.Click -= e);

Platform Supports

Even without adding specific platform support, it is possible to use only the core library. However, Rx becomes more user-friendly by replacing the standard TimeProvider and FrameProvider with those optimized for each platform. For example, while the standard TimeProvider is thread-based, using a UI thread-based TimeProvider for each platform can eliminate the need for dispatch through ObserveOn, enhancing usability. Additionally, since message loops differ across platforms, the use of individual FrameProvider is essential.

Although standard support is provided for the following platforms, by implementing TimeProvider and FrameProvider, it is possible to support any environment, including in-house game engine or other frameworks.

WPF

PM> Install-Package R3Extensions.WPF

R3Extensions.WPF package has two providers.

  • WpfDispatcherTimerProvider
  • WpfRenderingFrameProvider

Calling WpfProviderInitializer.SetDefaultObservableSystem() at startup will replace ObservableSystem.DefaultTimeProvider and ObservableSystem.DefaultFrameProvider with the aforementioned providers.

public partial class App : Application
{
    protected override void OnStartup(StartupEventArgs e)
    {
        // You need to set UnhandledExceptionHandler
        WpfProviderInitializer.SetDefaultObservableSystem(ex => Trace.WriteLine($"R3 UnhandledException:{ex}"));
    }
}

As a result, time based operations are replaced with DispatcherTimer, allowing you to reflect time based operations on the UI without having to use ObserveOn.

WpfRenderingFrameProvider is a frame-based loop system synchronized with the CompositionTarget.Rendering event. This allows for writing code that, for example, reads and reflects changes in values that do not implement INotifyPropertyChanged.

public partial class MainWindow : Window
{
    IDisposable disposable;

    public MainWindow()
    {
        InitializeComponent();

        var d1 = Observable.EveryValueChanged(this, x => x.Width).Subscribe(x => WidthText.Text = x.ToString());
        var d2 = Observable.EveryValueChanged(this, x => x.Height).Subscribe(x => HeightText.Text = x.ToString());

        disposable = Disposable.Combine(d1, d2);
    }

    protected override void OnClosed(EventArgs e)
    {
        disposable.Dispose();
    }
}

In addition to the above, the following ObserveOn/SubscribeOn methods have been added.

  • ObserveOnDispatcher
  • ObserveOnCurrentDispatcher
  • SubscribeOnDispatcher
  • SubscribeOnCurrentDispatcher

ViewModel binding support, see BindableReactiveProperty<T> section.

Avalonia

PM> Install-Package R3Extensions.Avalonia

R3Extensions.Avalonia package has these providers.

  • AvaloniaDispatcherTimerProvider
  • AvaloniaDispatcherFrameProvider
  • AvaloniaRenderingFrameProvider

Calling AvaloniaProviderInitializer.SetDefaultObservableSystem() at startup will replace ObservableSystem.DefaultTimeProvider and ObservableSystem.DefaultFrameProvider with AvaloniaDispatcherTimerProvider and AvaloniaDispatcherFrameProvider.

Additionally, calling UseR3() in ApplicationBuilder sets the default providers, making it a recommended approach.

public static AppBuilder BuildAvaloniaApp()
    => AppBuilder.Configure<App>()
        .UsePlatformDetect()
        .WithInterFont()
        .LogToTrace()
        .UseR3(); // add this line

As a result, time based operations are replaced with DispatcherTimer, allowing you to reflect time based operations on the UI without having to use ObserveOn.

In the case of methods without arguments, integrate the following method into ObservableSystem.RegisterUnhandledExceptionHandler. Please customize this as necessary.

ex => Logger.Sink?.Log(LogEventLevel.Error, "R3", null, "R3 Unhandled Exception {0}", ex);

AvaloniaDispatcherFrameProvider calculates a frame by polling with DispatcherTimer. By default, it updates at 60fps.

Using AvaloniaRenderingFrameProvider is more performant however it needs TopLevel.

public partial class MainWindow : Window
{
    AvaloniaRenderingFrameProvider frameProvider;

    public MainWindow()
    {
        InitializeComponent();

        // initialize RenderingFrameProvider
        var topLevel = TopLevel.GetTopLevel(this);
        this.frameProvider = new AvaloniaRenderingFrameProvider(topLevel!);
    }

    protected override void OnLoaded(RoutedEventArgs e)
    {
        // pass frameProvider
        Observable.EveryValueChanged(this, x => x.Width, frameProvider)
            .Subscribe(x => textBlock.Text = x.ToString());
    }

    protected override void OnClosed(EventArgs e)
    {
        frameProvider.Dispose();
    }
}

In addition to the above, the following ObserveOn/SubscribeOn methods have been added.

  • ObserveOnDispatcher
  • ObserveOnUIThreadDispatcher
  • SubscribeOnDispatcher
  • SubscribeOnUIThreadDispatcher

MAUI

PM> Install-Package R3Extensions.Maui

R3Extensions.Maui package has these providers.

  • MauiDispatcherTimerProvider
  • MauiTickerFrameProvider

And ViewModel binding is supported, see BindableReactiveProperty<T> section.

Calling UseR3() in MauiAppBuilder sets the default providers.

public static MauiApp CreateMauiApp()
{
    var builder = MauiApp.CreateBuilder();
    builder
        .UseMauiApp<App>()
        .ConfigureFonts(fonts =>
        {
            fonts.AddFont("OpenSans-Regular.ttf", "OpenSansRegular");
            fonts.AddFont("OpenSans-Semibold.ttf", "OpenSansSemibold");
        })
        .UseR3(); // add this line

    return builder.Build();
}

UseR3() configures the following.

  • Time based operations are replaced with IDispatcher, allowing you to reflect time based operations on the UI without having to use ObserveOn.
  • Frame based operations are replaced with Ticker.
  • ObservableSystem.RegisterUnhandledExceptionHandler is set to R3MauiDefaultExceptionHandler:
    • public class R3MauiDefaultExceptionHandler(IServiceProvider serviceProvider) : IR3MauiExceptionHandler
      {
          public void HandleException(Exception ex)
          {
              System.Diagnostics.Trace.TraceError("R3 Unhandled Exception {0}", ex);
      
              var logger = serviceProvider.GetService<ILogger<R3MauiDefaultExceptionHandler>>();
              logger?.LogError(ex, "R3 Unhandled Exception");
          }
      }

If you want to customize the ExceptionHandler, there are two ways.

One is to pass a callback to `UseR3e

builder.UseR3(ex => Console.WriteLine($"R3 UnhandledException:{ex}"));

The second is to create an implementation of the IR3MAuiExceptionHandler interface and DI it. Since MAUI is a DI-based framework, this method will make it easier to access the various functions in the DI container.

builder.Services.AddSingleton<IR3MauiExceptionHandler, YourCustomExceptionHandler>();

WinForms

PM> Install-Package R3Extensions.WinForms

R3Extensions.WinForms package has these providers.

  • WinFormsFrameProvider
  • WinFormsTimerProvider

Calling WinFormsProviderInitializer.SetDefaultObservableSystem() at startup(Program.Main) will replace ObservableSystem.DefaultTimeProvider and ObservableSystem.DefaultFrameProvider with WinFormsFrameProvider and WinFormsTimerProvider.

using R3.WinForms;

internal static class Program
{
    [STAThread]
    static void Main()
    {
        ApplicationConfiguration.Initialize();

        var form = new Form1();

        // add this line
        WinFormsProviderInitializer.SetDefaultObservableSystem(ex => Trace.WriteLine($"R3 UnhandledException:{ex}"), form);

        Application.Run(form);
    }
}

SetDefaultObservableSystem takes ISynchronizeInvoke (such as Form or Control). This makes the Timer operate on the thread to which it belongs.

FrameProvider is executed as one frame using the hook of MessageFilter.

WinUI3

PM> Install-Package R3Extensions.WinUI3

R3Extensions.WinUI3 package has these providers.

  • WinUI3DispatcherTimerProvider
  • WinUI3RenderingFrameProvider

Calling WinUI3ProviderInitializer.SetDefaultObservableSystem() at startup will replace ObservableSystem.DefaultTimeProvider and ObservableSystem.DefaultFrameProvider with the aforementioned providers.

public partial class App : Application
{
    public App()
    {
        this.InitializeComponent();

        // Add this line.
        // You need to set UnhandledExceptionHandler
        WinUI3ProviderInitializer.SetDefaultObservableSystem(ex => Trace.WriteLine(ex.ToString()));
    }

    // OnLaunched...
}

Unity

The minimum Unity support for R3 is Unity 2021.3.

There are two installation steps required to use it in Unity.

  1. Install R3 from NuGet using NuGetForUnity
  • Open Window from NuGet -> Manage NuGet Packages, Search "R3" and Press Install.

  • If you encount version conflicts error, please disable version validation in Player Settings(Edit -> Project Settings -> Player -> Scroll down and expand "Other Settings" than uncheck "Assembly Version Validation" under the "Configuration" section).

  1. Install the R3.Unity package by referencing the git URL
  • https://github.com/Cysharp/R3.git?path=src/R3.Unity/Assets/R3.Unity image image

R3 uses the ..* release tag, so you can specify a version like #1.0.0. For example: https://github.com/Cysharp/R3.git?path=src/R3.Unity/Assets/R3.Unity#1.0.0

Unity's TimeProvider and FrameProvider is PlayerLoop based. Additionally, there are variations of TimeProvider that correspond to the TimeScale.

UnityTimeProvider.Initialization
UnityTimeProvider.EarlyUpdate
UnityTimeProvider.FixedUpdate
UnityTimeProvider.PreUpdate
UnityTimeProvider.Update
UnityTimeProvider.PreLateUpdate
UnityTimeProvider.PostLateUpdate
UnityTimeProvider.TimeUpdate

UnityTimeProvider.InitializationIgnoreTimeScale
UnityTimeProvider.EarlyUpdateIgnoreTimeScale
UnityTimeProvider.FixedUpdateIgnoreTimeScale
UnityTimeProvider.PreUpdateIgnoreTimeScale
UnityTimeProvider.UpdateIgnoreTimeScale
UnityTimeProvider.PreLateUpdateIgnoreTimeScale
UnityTimeProvider.PostLateUpdateIgnoreTimeScale
UnityTimeProvider.TimeUpdateIgnoreTimeScale

UnityTimeProvider.InitializationRealtime
UnityTimeProvider.EarlyUpdateRealtime
UnityTimeProvider.FixedUpdateRealtime
UnityTimeProvider.PreUpdateRealtime
UnityTimeProvider.UpdateRealtime
UnityTimeProvider.PreLateUpdateRealtime
UnityTimeProvider.PostLateUpdateRealtime
UnityTimeProvider.TimeUpdateRealtime
UnityFrameProvider.Initialization
UnityFrameProvider.EarlyUpdate
UnityFrameProvider.FixedUpdate
UnityFrameProvider.PreUpdate
UnityFrameProvider.Update
UnityFrameProvider.PreLateUpdate
UnityFrameProvider.PostLateUpdate
UnityFrameProvider.TimeUpdate

You can write it like this using these:

// ignore-timescale based interval
Observable.Interval(TimeSpan.FromSeconds(5), UnityTimeProvider.UpdateIgnoreTimeScale);

// fixed-update loop
Observable.EveryUpdate(UnityFrameProvider.FixedUpdate);

// observe PostLateUpdate
Observable.Return(42).ObserveOn(UnityFrameProvider.PostLateUpdate);

In the case of Unity, UnityTimeProvider.Update and UnityFrameProvider.Update are automatically set at startup by default.

public static class UnityProviderInitializer
{
    [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.AfterAssembliesLoaded)]
    public static void SetDefaultObservableSystem()
    {
        SetDefaultObservableSystem(static ex => UnityEngine.Debug.LogException(ex));
    }

    public static void SetDefaultObservableSystem(Action<Exception> unhandledExceptionHandler)
    {
        ObservableSystem.RegisterUnhandledExceptionHandler(unhandledExceptionHandler);
        ObservableSystem.DefaultTimeProvider = UnityTimeProvider.Update;
        ObservableSystem.DefaultFrameProvider = UnityFrameProvider.Update;
    }
}

A method has been added to convert from UnityEvent to AsObservable. If a CancellationToken is passed, it allows the event source to call for event unsubscription by issuing OnCompleted when Cancel is invoked. For example, if you pass MonoBehaviour.destroyCancellationToken, it will be reliably unsubscribed in conjunction with the GameObject's lifecycle.

public static Observable<Unit> AsObservable(this UnityEngine.Events.UnityEvent unityEvent, CancellationToken cancellationToken = default)
public static Observable<T> AsObservable<T>(this UnityEngine.Events.UnityEvent<T> unityEvent, CancellationToken cancellationToken = default)
public static Observable<(T0 Arg0, T1 Arg1)> AsObservable<T0, T1>(this UnityEngine.Events.UnityEvent<T0, T1> unityEvent, CancellationToken cancellationToken = default)
public static Observable<(T0 Arg0, T1 Arg1, T2 Arg2)> AsObservable<T0, T1, T2>(this UnityEngine.Events.UnityEvent<T0, T1, T2> unityEvent, CancellationToken cancellationToken = default)
public static Observable<(T0 Arg0, T1 Arg1, T2 Arg2, T3 Arg3)> AsObservable<T0, T1, T2, T3>(this UnityEngine.Events.UnityEvent<T0, T1, T2, T3> unityEvent, CancellationToken cancellationToken = default)

Additionally, with extension methods for uGUI, uGUI events can be easily converted to Observables. OnValueChangedAsObservable starts the subscription by first emitting the latest value at the time of subscription. Also when the associated component is destroyed, it emits an OnCompleted event to ensure the subscription is reliably cancelled.

public static IDisposable SubscribeToText(this Observable<string> source, Text text)
public static IDisposable SubscribeToText<T>(this Observable<T> source, Text text)
public static IDisposable SubscribeToText<T>(this Observable<T> source, Text text, Func<T, string> selector)
public static IDisposable SubscribeToInteractable(this Observable<bool> source, Selectable selectable)
public static Observable<Unit> OnClickAsObservable(this Button button)
public static Observable<bool> OnValueChangedAsObservable(this Toggle toggle)
public static Observable<float> OnValueChangedAsObservable(this Scrollbar scrollbar)
public static Observable<Vector2> OnValueChangedAsObservable(this ScrollRect scrollRect)
public static Observable<float> OnValueChangedAsObservable(this Slider slider)
public static Observable<string> OnEndEditAsObservable(this InputField inputField)
public static Observable<string> OnValueChangedAsObservable(this InputField inputField)
public static Observable<int> OnValueChangedAsObservable(this Dropdown dropdown)

In addition to the above, the following ObserveOn/SubscribeOn methods have been added.

  • ObserveOnMainThread
  • SubscribeOnMainThread

When using AddTo(Component / GameObject) in Unity, it attaches a special component called ObservableDestroyTrigger if gameObject is not active yet, which monitors for destruction. Unity has a characteristic where components that have never been activated do not fire OnDestroy, and the destroyCancellationToken does not get canceled. ObservableDestroyTrigger is designed to monitor for destruction and reliably issue OnDestroy regardless of the active state. It would be wise to use destroyCancellationToken effectively if needed.

// simple pattern
Observable.EveryUpdate().Subscribe().AddTo(this);
Observable.EveryUpdate().Subscribe().AddTo(this);
Observable.EveryUpdate().Subscribe().AddTo(this);

// better performance
var d = Disposable.CreateBuilder();
Observable.EveryUpdate().Subscribe().AddTo(ref d);
Observable.EveryUpdate().Subscribe().AddTo(ref d);
Observable.EveryUpdate().Subscribe().AddTo(ref d);
d.RegisterTo(this.destroyCancellationToken); // Build and Register

You open tracker window in Window -> Observable Tracker. It enables watch ObservableTracker list in editor window.

image

  • Enable AutoReload(Toggle) - Reload automatically.
  • Reload - Reload view.
  • GC.Collect - Invoke GC.Collect.
  • Enable Tracking(Toggle) - Start to track subscription. Performance impact: low.
  • Enable StackTrace(Toggle) - Capture StackTrace when observable is subscribed. Performance impact: high.

Observable Tracker is intended for debugging use only as enabling tracking and capturing stacktraces is useful but has a heavy performance impact. Recommended usage is to enable both tracking and stacktraces to find subscription leaks and to disable them both when done.

SerializableReactiveProperty<T>

ReactiveProperty<T> can not use on [SerializeField]. However you can use SerializableReactiveProperty<T> instead.

public class NewBehaviourScript : MonoBehaviour
{
    public SerializableReactiveProperty<int> rpInt;
    public SerializableReactiveProperty<long> rpLong;
    public SerializableReactiveProperty<byte> rpByte;
    public SerializableReactiveProperty<float> rpFloat;
    public SerializableReactiveProperty<double> rpDouble;
    public SerializableReactiveProperty<string> rpString;
    public SerializableReactiveProperty<bool> rpBool;
    public SerializableReactiveProperty<Vector2> rpVector2;
    public SerializableReactiveProperty<Vector2Int> rpVector2Int;
    public SerializableReactiveProperty<Vector3> rpVector3;
    public SerializableReactiveProperty<Vector3Int> rpVector3Int;
    public SerializableReactiveProperty<Vector4> rpVector4;
    public SerializableReactiveProperty<Color> rpColor;
    public SerializableReactiveProperty<Rect> rpRect;
    public SerializableReactiveProperty<Bounds> rpBounds;
    public SerializableReactiveProperty<BoundsInt> rpBoundsInt;
    public SerializableReactiveProperty<Quaternion> rpQuaternion;
    public SerializableReactiveProperty<Matrix4x4> rpMatrix4x4;
    public SerializableReactiveProperty<FruitEnum> rpEnum;
    public SerializableReactiveProperty<FruitFlagsEnum> rpFlagsEnum;
}

image

Triggers

R3 can handle MonoBehaviour messages with R3.Triggers:

These can also be handled more easily by directly subscribing to observables returned by extension methods on Component/GameObject. These methods inject ObservableTrigger automatically.

using R3;
using R3.Triggers;

// when using R3.Triggers, Component or GameObject has [MonoBehaviour Messages]AsObservable extension methods.
this.OnCollisionEnterAsObservable()
    .Subscribe(x =>
    {
        Debug.Log("collision enter");
    });

Godot

Godot support is for Godot 4.x.

There are some installation steps required to use it in Godot.

  1. Install R3 from NuGet.
  2. Download(or clone git submodule) the repository and move the src/R3.Godot/addons/R3.Godot directory to your project.
  3. Enable the R3.Godot plugin from the plugins menu.

image

Godot support has these TimeProvider and FrameProvider.

GodotTimeProvider.Process
GodotTimeProvider.PhysicsProcess
GodotFrameProvider.Process
GodotFrameProvider.PhysicsProcess

autoloaded FrameProviderDispatcher set GodotTimeProvider.Process and GodotFrameProvider.Process as default providers. Additionally, UnhandledException is written to GD.PrintErr.

This is the minimal sample to use R3.Godot.

using Godot;
using R3;
using System;

public partial class Node2D : Godot.Node2D
{
    IDisposable subscription;

    public override void _Ready()
    {
        subscription = Observable.EveryUpdate()
            .ThrottleLastFrame(10)
            .Subscribe(x =>
            {
                GD.Print($"Observable.EveryUpdate: {GodotFrameProvider.Process.GetFrameCount()}");
            });
    }

    public override void _ExitTree()
    {
        subscription?.Dispose();
    }
}

For the UI event observe/subscribe extension are also available.

public static IDisposable SubscribeToLabel(this Observable<string> source, Label label)
public static IDisposable SubscribeToLabel<T>(this Observable<T> source, Label label)
public static IDisposable SubscribeToLabel<T>(this Observable<T> source, Label label, Func<T, string> selector)
public static Observable<Unit> OnPressedAsObservable(this BaseButton button, CancellationToken cancellationToken = default)
public static Observable<bool> OnToggledAsObservable(this BaseButton button, CancellationToken cancellationToken = default)
public static Observable<double> OnValueChangedAsObservable(this Godot.Range range, CancellationToken cancellationToken = default)
public static Observable<string> OnTextSubmittedAsObservable(this LineEdit lineEdit, CancellationToken cancellationToken = default)
public static Observable<string> OnTextChangedAsObservable(this LineEdit lineEdit, CancellationToken cancellationToken = default)
public static Observable<Unit> OnTextChangedAsObservable(this TextEdit textEdit, CancellationToken cancellationToken = default)
public static Observable<long> OnItemSelectedAsObservable(this OptionButton optionButton, CancellationToken cancellationToken = default)

You can watch subscription status in Debugger -> ObservableTracker view.

image

Stride

R3 extensions for Stride game engine.

PM> Install-Package R3Extensions.Stride

Usage

  1. Reference R3.Stride
  2. add empty Entity by Stride editor
  3. add "R3/StrideFrameProviderComponent"
  4. set Stride Frame Provider Component's priority to lower than other scripts which use R3 API

R3Extensions.Stride provides these providers.

  • StrideTimeProvider
  • StrideFrameProvider

For the UI event observe/subscribe extension are also available.

public static Observable<(object? sender, PropertyChangedArgs<MouseOverState> arg)> MouseOverStateChangedAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> PreviewTouchDownAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> PreviewTouchMoveAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> PreviewTouchUpAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> TouchDownAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> TouchMoveAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> TouchUpAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> TouchEnterAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, TouchEventArgs)> TouchLeaveAsObservable(this UIElement element, CancellationToken token = default)
public static Observable<(object? sender, RoutedEventArgs arg)> ClickAsObservable(this ButtonBase btn, CancellationToken token = default)
public static Observable<(object? sender, RoutedEventArgs arg)> ValueChangedAsObservable(this Slider slider, CancellationToken token = default)
public static Observable<(object? sender, RoutedEventArgs arg)> TextChangedAsObservable(this EditText editText, CancellationToken token = default)
public static Observable<(object? sender, RoutedEventArgs arg)> CheckedAsObservable(this ToggleButton toggleButton, CancellationToken token = default)
public static Observable<(object? sender, RoutedEventArgs arg)> IndeterminateAsObservable(this ToggleButton button, CancellationToken token = default)
public static Observable<(object? sender, RoutedEventArgs arg)> UncheckedAsObservable(this ToggleButton toggleButton, CancellationToken token = default)
public static Observable<(object? sender, RoutedEventArgs arg)> OutsideClickAsObservable(this ModalElement modalElement, CancellationToken token = default)

And event extensions.

public static Observable<(object? sender, TrackingCollectionChangedEventArgs arg)> CollectionChangedAsObservable(this ITrackingCollectionChanged hashset, CancellationToken token = default)
public static Observable<(object? sender, FastTrackingCollectionChangedEventArgs arg)> CollectionChangedAsObservable<T>(this FastTrackingCollection<T> collection, CancellationToken token = default)
public static Observable<T> AsObservable<T>(this EventKey<T> eventKey, CancellationToken token = default)
public static Observable<Unit> AsObservable(this EventKey eventKey, CancellationToken token = default)

MonoGame

R3 extensions for MonoGame game engine.

PM> Install-Package R3Extensions.MonoGame

Set up as follows:

  1. Reference R3.MonoGame
  2. Add an instance of ObservableSystemComponent to your Game class.
public class Game1 : Game
{
    public Game1()
    {
        var observableSystemComponent = new ObservableSystemComponent(this);
        Components.Add(observableSystemComponent);
    }
}

ObservableSystemComponent configure the following:

  • Setup TimeProvider and FrameProvider.
    • Time based operations are replaced with Game.Update(GameTime).
    • Frame based operations are replaced with Game.Update(GameTime).
  • Set UnhandledExceptionHandler. By default, the unhandled exception handler simply flows to System.Diagnostics.Trace.
    • If you want to change this, do the following:
      • new ObservableSystemComponent(this, ex => Console.WriteLine($"R3 UnhandledException: {ex}");

R3Extensions.MonoGame provides these providers.

  • MonoGameTimeProvider
  • MonoGameFrameProvider

And provides these custom operators.

// Observe the current GameTime value.
public static Observable<GameTime> GameTime(this Observable<Unit> source)

// observe the current GameTime and the value of the source observable.
public static Observable<(GameTime GameTime, T Item)> GameTime<T>(this Observable<T> source)

LogicLooper

R3 extensions for LogicLooper

PM> Install-Package R3Extensions.LogicLooper

That supports two special providers.

  • LogicLooperFrameProvider
  • LogicLooperTimerProvider

Blazor

R3 extensions for Blazor.

PM> Install-Package R3Extensions.Blazor

// Add this line before Build()
builder.Services.AddBlazorR3();

var app = builder.Build();

When you call AddBlazorR3 on IServiceCollection, a TimeProvider corresponding to the request scope is implicitly used and automatically marshaled to the current request. This eliminates the need for InvokeAsync when calling time-related methods within Blazor.

public partial class Counter : IDisposable
{
    int currentCount = 0;
    IDisposable? subscription;

    protected override void OnInitialized()
    {
        subscription = Observable.Interval(TimeSpan.FromSeconds(1))
            .Subscribe(_ =>
            {
                // no needs InvokeAsync
                currentCount++;
                StateHasChanged();
            });
    }

    public void Dispose()
    {
        subscription?.Dispose();
    }
}

In this case, since all default TimeProviders are tied to the request, you must explicitly pass TimeProvider.System for executions that are not related to a request.

There is also a way to utilize R3 in Blazor without using AddBlazorR3. One method is to use ObserveOnCurrentSynchronizationContext.

subscription = Observable.Interval(TimeSpan.FromSeconds(1)) // default TimeProvider is TimeProvider.System
    .ObserveOnCurrentSynchronizationContext() // uses Blazor RendererSynchronizationContext
    .Subscribe(_ =>
    {
        currentCount++;
        StateHasChanged();
    });

Another method is to inject the TimeProvider. By manually setting up a SynchronizationContextTimeProvider tied to the request scope, you can use a custom TimeProvider without changing the default TimeProvider. Also, in this case, it is easy to substitute a FakeTimeProvider for unit testing.

// use AddScoped instead of AddBlazorR3
builder.Services.AddScoped<TimeProvider, SynchronizationContextTimeProvider>();

var app = builder.Build();
public partial class Counter : IDisposable
{
    int currentCount = 0;
    IDisposable? subscription;

    // Inject scoped TimeProvider manually(in bUnit testing, inject FakeTimeProvider)
    [Inject]
    public required TimeProvider TimeProvider { get; init; }

    protected override void OnInitialized()
    {
        subscription = Observable.Interval(TimeSpan.FromSeconds(1), TimeProvider)
            .Subscribe(_ =>
            {
                currentCount++;
                StateHasChanged();
            });
    }

    public void Dispose()
    {
        subscription?.Dispose();
    }
}

Operator Reference

The standard operators in ReactiveX follow the behavior described in the Reactive X Operator documentation.

Methods that accept a Scheduler will take a TimeProvider. Additionally, methods that receive a TimeProvider have an added method called ***Frame that accepts a FrameProvider.

For default time based operations that do not take a provider, ObservableSystem.DefaultTimeProvider is used, and for frame based operations without provider, ObservableSystem.DefaultFrameProvider is used.

Factory

Factory methods are defined as static methods in the static class Observable.

Name(Parameter) ReturnType
Amb(params Observable<T>[] sources) Observable<T>
Amb(IEnumerable<Observable<T>> sources) Observable<T>
CombineLatest(params Observable<T>[] sources) Observable<T[]>
CombineLatest(IEnumerable<Observable<T>> sources) Observable<T[]>
Concat(params Observable<T>[] sources) Observable<T>
Concat(IEnumerable<Observable<T>> sources) Observable<T>
Concat(this Observable<Observable<T>> sources) Observable<T>
Create(Func<Observer<T>, IDisposable> subscribe, Boolean rawObserver = false) Observable<T>
Create(TState state, Func<Observer<T>, TState, IDisposable> subscribe, Boolean rawObserver = false) Observable<T>
Create(Func<Observer<T>, CancellationToken, ValueTask> subscribe, Boolean rawObserver = false) Observable<T>
Create(TState state, Func<Observer<T>, TState, CancellationToken, ValueTask> subscribe, Boolean rawObserver = false) Observable<T>
CreateFrom(Func<CancellationToken, IAsyncEnumerable<T>> factory) Observable<T>
CreateFrom(TState state, Func<CancellationToken, TState, IAsyncEnumerable<T>> factory) Observable<T>
Defer(Func<Observable<T>> observableFactory) Observable<T>
Empty() Observable<T>
Empty(TimeProvider timeProvider) Observable<T>
Empty(TimeSpan dueTime, TimeProvider timeProvider) Observable<T>
EveryUpdate() Observable<Unit>
EveryUpdate(CancellationToken cancellationToken) Observable<Unit>
EveryUpdate(FrameProvider frameProvider) Observable<Unit>
EveryUpdate(FrameProvider frameProvider, CancellationToken cancellationToken) Observable<Unit>
EveryValueChanged(TSource source, Func<TSource, TProperty> propertySelector, CancellationToken cancellationToken = default) Observable<TProperty>
EveryValueChanged(TSource source, Func<TSource, TProperty> propertySelector, FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<TProperty>
EveryValueChanged(TSource source, Func<TSource, TProperty> propertySelector, EqualityComparer<TProperty> equalityComparer, CancellationToken cancellationToken = default) Observable<TProperty>
EveryValueChanged(TSource source, Func<TSource, TProperty> propertySelector, FrameProvider frameProvider, EqualityComparer<TProperty> equalityComparer, CancellationToken cancellationToken = default) Observable<TProperty>
FromAsync(Func<CancellationToken, ValueTask> asyncFactory, Boolean configureAwait = true) Observable<Unit>
FromAsync(Func<CancellationToken, ValueTask<T>> asyncFactory, Boolean configureAwait = true) Observable<T>
FromEvent(Action<Action> addHandler, Action<Action> removeHandler, CancellationToken cancellationToken = default) Observable<Unit>
FromEvent(Action<Action<T>> addHandler, Action<Action<T>> removeHandler, CancellationToken cancellationToken = default) Observable<T>
FromEvent(Func<Action, TDelegate> conversion, Action<TDelegate> addHandler, Action<TDelegate> removeHandler, CancellationToken cancellationToken = default) Observable<Unit>
FromEvent(Func<Action<T>, TDelegate> conversion, Action<TDelegate> addHandler, Action<TDelegate> removeHandler, CancellationToken cancellationToken = default) Observable<T>
FromEventHandler(Action<EventHandler> addHandler, Action<EventHandler> removeHandler, CancellationToken cancellationToken = default) Observable<ValueTuple<Object, EventArgs>>
FromEventHandler(Action<EventHandler<TEventArgs>> addHandler, Action<EventHandler<TEventArgs>> removeHandler, CancellationToken cancellationToken = default) Observable<ValueTuple<Object, TEventArgs>>
Interval(TimeSpan period, CancellationToken cancellationToken = default) Observable<Unit>
Interval(TimeSpan period, TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<Unit>
IntervalFrame(Int32 periodFrame, CancellationToken cancellationToken = default) Observable<Unit>
IntervalFrame(Int32 periodFrame, FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<Unit>
Merge(params Observable<T>[] sources) Observable<T>
Merge(this IEnumerable<Observable<T>> sources) Observable<T>
Merge(this Observable<Observable<T>> sources) Observable<T>
Never() Observable<T>
NextFrame(CancellationToken cancellationToken = default) Observable<Unit>
NextFrame(FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<Unit>
ObservePropertyChanged(this T value, Func<T, TProperty> propertySelector, Boolean pushCurrentValueOnSubscribe = true, CancellationToken cancellationToken = default, String expr = default) Observable<TProperty>
ObservePropertyChanged(this T value, Func<T, TProperty1> propertySelector1, Func<TProperty1, TProperty2> propertySelector2, Boolean pushCurrentValueOnSubscribe = true, CancellationToken cancellationToken = default, String propertySelector1Expr = default, String propertySelector2Expr = default) Observable<TProperty2>
ObservePropertyChanged(this T value, Func<T, TProperty1> propertySelector1, Func<TProperty1, TProperty2> propertySelector2, Func<TProperty2, TProperty3> propertySelector3, Boolean pushCurrentValueOnSubscribe = true, CancellationToken cancellationToken = default, String propertySelector1Expr = default, String propertySelector2Expr = default, String propertySelector3Expr = default) Observable<TProperty3>
ObservePropertyChanging(this T value, Func<T, TProperty> propertySelector, Boolean pushCurrentValueOnSubscribe = true, CancellationToken cancellationToken = default, String expr = default) Observable<TProperty>
ObservePropertyChanging(this T value, Func<T, TProperty1> propertySelector1, Func<TProperty1, TProperty2> propertySelector2, Boolean pushCurrentValueOnSubscribe = true, CancellationToken cancellationToken = default, String propertySelector1Expr = default, String propertySelector2Expr = default) Observable<TProperty2>
ObservePropertyChanging(this T value, Func<T, TProperty1> propertySelector1, Func<TProperty1, TProperty2> propertySelector2, Func<TProperty2, TProperty3> propertySelector3, Boolean pushCurrentValueOnSubscribe = true, CancellationToken cancellationToken = default, String propertySelector1Expr = default, String propertySelector2Expr = default, String propertySelector3Expr = default) Observable<TProperty3>
Range(Int32 start, Int32 count) Observable<Int32>
Range(Int32 start, Int32 count, CancellationToken cancellationToken) Observable<Int32>
Repeat(T value, Int32 count) Observable<T>
Repeat(T value, Int32 count, CancellationToken cancellationToken) Observable<T>
Return(T value) Observable<T>
Return(T value, TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<T>
Return(T value, TimeSpan dueTime, TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<T>
Return(Unit value) Observable<Unit>
Return(Boolean value) Observable<Boolean>
Return(Int32 value) Observable<Int32>
ReturnFrame(T value, CancellationToken cancellationToken = default) Observable<T>
ReturnFrame(T value, FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<T>
ReturnFrame(T value, Int32 dueTimeFrame, CancellationToken cancellationToken = default) Observable<T>
ReturnFrame(T value, Int32 dueTimeFrame, FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<T>
ReturnOnCompleted(Result result) Observable<T>
ReturnOnCompleted(Result result, TimeProvider timeProvider) Observable<T>
ReturnOnCompleted(Result result, TimeSpan dueTime, TimeProvider timeProvider) Observable<T>
ReturnUnit() Observable<Unit>
Throw(Exception exception) Observable<T>
Throw(Exception exception, TimeProvider timeProvider) Observable<T>
Throw(Exception exception, TimeSpan dueTime, TimeProvider timeProvider) Observable<T>
Timer(TimeSpan dueTime, CancellationToken cancellationToken = default) Observable<Unit>
Timer(DateTimeOffset dueTime, CancellationToken cancellationToken = default) Observable<Unit>
Timer(TimeSpan dueTime, TimeSpan period, CancellationToken cancellationToken = default) Observable<Unit>
Timer(DateTimeOffset dueTime, TimeSpan period, CancellationToken cancellationToken = default) Observable<Unit>
Timer(TimeSpan dueTime, TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<Unit>
Timer(DateTimeOffset dueTime, TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<Unit>
Timer(TimeSpan dueTime, TimeSpan period, TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<Unit>
Timer(DateTimeOffset dueTime, TimeSpan period, TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<Unit>
TimerFrame(Int32 dueTimeFrame, CancellationToken cancellationToken = default) Observable<Unit>
TimerFrame(Int32 dueTimeFrame, Int32 periodFrame, CancellationToken cancellationToken = default) Observable<Unit>
TimerFrame(Int32 dueTimeFrame, FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<Unit>
TimerFrame(Int32 dueTimeFrame, Int32 periodFrame, FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<Unit>
ToObservable(this Task task, Boolean configureAwait = true) Observable<Unit>
ToObservable(this Task<T> task, Boolean configureAwait = true) Observable<T>
ToObservable(this ValueTask task, Boolean configureAwait = true) Observable<Unit>
ToObservable(this ValueTask<T> task, Boolean configureAwait = true) Observable<T>
ToObservable(this IEnumerable<T> source, CancellationToken cancellationToken = default) Observable<T>
ToObservable(this IAsyncEnumerable<T> source) Observable<T>
ToObservable(this IObservable<T> source) Observable<T>
Yield(CancellationToken cancellationToken = default) Observable<Unit>
Yield(TimeProvider timeProvider, CancellationToken cancellationToken = default) Observable<Unit>
YieldFrame(CancellationToken cancellationToken = default) Observable<Unit>
YieldFrame(FrameProvider frameProvider, CancellationToken cancellationToken = default) Observable<Unit>
Zip(params Observable<T>[] sources) Observable<T[]>
Zip(IEnumerable<Observable<T>> sources) Observable<T[]>
ZipLatest(params Observable<T>[] sources) Observable<T[]>
ZipLatest(IEnumerable<Observable<T>> sources) Observable<T[]>

Methods that accept a CancellationToken will emit OnCompleted when a Cancel is issued. This allows you to unsubscribe all subscriptions from the event source.

Range, Repeat, Return/Empty/Throw (which do not take a TimeProvider) issue values immediately. This means that even if disposed of midway, the emission of values cannot be stopped. For example,

Observable.Range(0, int.MaxValue)
    .Do(onNext: x => Console.WriteLine($"Do:{x}"))
    .Take(10)
    .Subscribe(x => Console.WriteLine($"Subscribe:{x}"));

In this case, since the disposal of Take(10) is conveyed after the emission of Range, the stream does not stop. In dotnet/reactive, this could be avoided by specifying CurrentThreadScheduler, but it was not adopted in R3 due to a significant performance decrease.

If you want to avoid such cases, you can stop the Range by conveying a cancellation command through a CancellationToken.

var cts = new CancellationTokenSource();

Observable.Range(0, int.MaxValue, cts.Token)
    .Do(onNext: x => Console.WriteLine($"Do:{x}"))
    .Take(10)
    .DoCancelOnCompleted(cts)
    .Subscribe(x => Console.WriteLine($"Subscribe:{x}"));

Among our custom frame-based methods, EveryUpdate emits values every frame. Yield and NextFrame are similar, but Yield emits on the first frame loop after subscribing, while NextFrame delays emission to the next frame if it's in the same frame as the FrameProvider.GetFrameCount() value obtained at the time of subscription. EveryValueChanged compares values every frame and notifies when there is a change.

Operator

Operator methods are defined as extension methods to Observable<T> in the static class ObservableExtensions.

Name(Parameter) ReturnType
AggregateAsync(this Observable<T> source, Func<T, T, T> func, CancellationToken cancellationToken = default) Task<T>
AggregateAsync(this Observable<T> source, TResult seed, Func<TResult, T, TResult> func, CancellationToken cancellationToken = default) Task<TResult>
AggregateAsync(this Observable<T> source, TAccumulate seed, Func<TAccumulate, T, TAccumulate> func, Func<TAccumulate, TResult> resultSelector, CancellationToken cancellationToken = default) Task<TResult>
AggregateByAsync(this Observable<TSource> source, Func<TSource, TKey> keySelector, TAccumulate seed, Func<TAccumulate, TSource, TAccumulate> func, IEqualityComparer<TKey> keyComparer = default, CancellationToken cancellationToken = default) Task<IEnumerable<KeyValuePair<TKey, TAccumulate>>>
AggregateByAsync(this Observable<TSource> source, Func<TSource, TKey> keySelector, Func<TKey, TAccumulate> seedSelector, Func<TAccumulate, TSource, TAccumulate> func, IEqualityComparer<TKey> keyComparer = default, CancellationToken cancellationToken = default) Task<IEnumerable<KeyValuePair<TKey, TAccumulate>>>
AllAsync(this Observable<T> source, Func<T, Boolean> predicate, CancellationToken cancellationToken = default) Task<Boolean>
Amb(this Observable<T> source, Observable<T> second) Observable<T>
AnyAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<Boolean>
AnyAsync(this Observable<T> source, Func<T, Boolean> predicate, CancellationToken cancellationToken = default) Task<Boolean>
Append(this Observable<T> source, T value) Observable<T>
Append(this Observable<T> source, IEnumerable<T> values) Observable<T>
Append(this Observable<T> source, Func<T> valueFactory) Observable<T>
Append(this Observable<T> source, TState state, Func<TState, T> valueFactory) Observable<T>
AsObservable(this Observable<T> source) Observable<T>
AsSystemObservable(this Observable<T> source) IObservable<T>
AsUnitObservable(this Observable<T> source) Observable<Unit>
AverageAsync(this Observable<Int32> source, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<T> source, Func<T, Int32> selector, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<Int64> source, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<T> source, Func<T, Int64> selector, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<Single> source, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<T> source, Func<T, Single> selector, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<Double> source, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<T> source, Func<T, Double> selector, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<Decimal> source, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<T> source, Func<T, Decimal> selector, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<Double>
AverageAsync(this Observable<TSource> source, Func<TSource, TResult> selector, CancellationToken cancellationToken = default) Task<Double>
Cast(this Observable<T> source) Observable<TResult>
Catch(this Observable<T> source, Observable<T> second) Observable<T>
Catch(this Observable<T> source, Func<TException, Observable<T>> errorHandler) Observable<T>
Chunk(this Observable<T> source, Int32 count) Observable<T[]>
Chunk(this Observable<T> source, Int32 count, Int32 skip) Observable<T[]>
Chunk(this Observable<T> source, TimeSpan timeSpan) Observable<T[]>
Chunk(this Observable<T> source, TimeSpan timeSpan, TimeProvider timeProvider) Observable<T[]>
Chunk(this Observable<T> source, TimeSpan timeSpan, Int32 count) Observable<T[]>
Chunk(this Observable<T> source, TimeSpan timeSpan, Int32 count, TimeProvider timeProvider) Observable<T[]>
Chunk(this Observable<TSource> source, Observable<TWindowBoundary> windowBoundaries) Observable<TSource[]>
Chunk(this Observable<T> source, Func<T, CancellationToken, ValueTask> asyncWindow, Boolean configureAwait = true) Observable<T[]>
ChunkFrame(this Observable<T> source) Observable<T[]>
ChunkFrame(this Observable<T> source, Int32 frameCount) Observable<T[]>
ChunkFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T[]>
ChunkFrame(this Observable<T> source, Int32 frameCount, Int32 count) Observable<T[]>
ChunkFrame(this Observable<T> source, Int32 frameCount, Int32 count, FrameProvider frameProvider) Observable<T[]>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Func<T1, T2, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Func<T1, T2, T3, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Func<T1, T2, T3, T4, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Func<T1, T2, T3, T4, T5, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Func<T1, T2, T3, T4, T5, T6, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Func<T1, T2, T3, T4, T5, T6, T7, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Func<T1, T2, T3, T4, T5, T6, T7, T8, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Observable<T14> source14, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, TResult> resultSelector) Observable<TResult>
CombineLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Observable<T14> source14, Observable<T15> source15, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, TResult> resultSelector) Observable<TResult>
Concat(this Observable<T> source, Observable<T> second) Observable<T>
ContainsAsync(this Observable<T> source, T value, CancellationToken cancellationToken = default) Task<Boolean>
ContainsAsync(this Observable<T> source, T value, IEqualityComparer<T> equalityComparer, CancellationToken cancellationToken = default) Task<Boolean>
CountAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<Int32>
CountAsync(this Observable<T> source, Func<T, Boolean> predicate, CancellationToken cancellationToken = default) Task<Int32>
Debounce(this Observable<T> source, TimeSpan timeSpan) Observable<T>
Debounce(this Observable<T> source, TimeSpan timeSpan, TimeProvider timeProvider) Observable<T>
Debounce(this Observable<T> source, Func<T, CancellationToken, ValueTask> throttleDurationSelector, Boolean configureAwait = true) Observable<T>
DebounceFrame(this Observable<T> source, Int32 frameCount) Observable<T>
DebounceFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
DefaultIfEmpty(this Observable<T> source) Observable<T>
DefaultIfEmpty(this Observable<T> source, T defaultValue) Observable<T>
Delay(this Observable<T> source, TimeSpan dueTime) Observable<T>
Delay(this Observable<T> source, TimeSpan dueTime, TimeProvider timeProvider) Observable<T>
DelayFrame(this Observable<T> source, Int32 frameCount) Observable<T>
DelayFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
DelaySubscription(this Observable<T> source, TimeSpan dueTime) Observable<T>
DelaySubscription(this Observable<T> source, TimeSpan dueTime, TimeProvider timeProvider) Observable<T>
DelaySubscriptionFrame(this Observable<T> source, Int32 frameCount) Observable<T>
DelaySubscriptionFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
Dematerialize(this Observable<Notification<T>> source) Observable<T>
Distinct(this Observable<T> source) Observable<T>
Distinct(this Observable<T> source, IEqualityComparer<T> comparer) Observable<T>
DistinctBy(this Observable<TSource> source, Func<TSource, TKey> keySelector) Observable<TSource>
DistinctBy(this Observable<TSource> source, Func<TSource, TKey> keySelector, IEqualityComparer<TKey> comparer) Observable<TSource>
DistinctUntilChanged(this Observable<T> source) Observable<T>
DistinctUntilChanged(this Observable<T> source, IEqualityComparer<T> comparer) Observable<T>
DistinctUntilChangedBy(this Observable<T> source, Func<T, TKey> keySelector) Observable<T>
DistinctUntilChangedBy(this Observable<T> source, Func<T, TKey> keySelector, IEqualityComparer<TKey> comparer) Observable<T>
Do(this Observable<T> source, Action<T> onNext = default, Action<Exception> onErrorResume = default, Action<Result> onCompleted = default, Action onDispose = default, Action onSubscribe = default) Observable<T>
Do(this Observable<T> source, TState state, Action<T, TState> onNext = default, Action<Exception, TState> onErrorResume = default, Action<Result, TState> onCompleted = default, Action<TState> onDispose = default, Action<TState> onSubscribe = default) Observable<T>
DoCancelOnCompleted(this Observable<T> source, CancellationTokenSource cancellationTokenSource) Observable<T>
ElementAtAsync(this Observable<T> source, Int32 index, CancellationToken cancellationToken = default) Task<T>
ElementAtAsync(this Observable<T> source, Index index, CancellationToken cancellationToken = default) Task<T>
ElementAtOrDefaultAsync(this Observable<T> source, Int32 index, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
ElementAtOrDefaultAsync(this Observable<T> source, Index index, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
FirstAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<T>
FirstAsync(this Observable<T> source, Func<T, Boolean> predicate, CancellationToken cancellationToken = default) Task<T>
FirstOrDefaultAsync(this Observable<T> source, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
FirstOrDefaultAsync(this Observable<T> source, Func<T, Boolean> predicate, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
ForEachAsync(this Observable<T> source, Action<T> action, CancellationToken cancellationToken = default) Task
ForEachAsync(this Observable<T> source, Action<T, Int32> action, CancellationToken cancellationToken = default) Task
FrameCount(this Observable<T> source) Observable<ValueTuple<Int64, T>>
FrameCount(this Observable<T> source, FrameProvider frameProvider) Observable<ValueTuple<Int64, T>>
FrameInterval(this Observable<T> source) Observable<ValueTuple<Int64, T>>
FrameInterval(this Observable<T> source, FrameProvider frameProvider) Observable<ValueTuple<Int64, T>>
IgnoreElements(this Observable<T> source) Observable<T>
IgnoreElements(this Observable<T> source, Action<T> doOnNext) Observable<T>
IgnoreOnErrorResume(this Observable<T> source) Observable<T>
IgnoreOnErrorResume(this Observable<T> source, Action<Exception> doOnErrorResume) Observable<T>
Index(this Observable<Unit> source) Observable<Int32>
Index(this Observable<T> source) Observable<ValueTuple<Int32, T>>
IsEmptyAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<Boolean>
LastAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<T>
LastAsync(this Observable<T> source, Func<T, Boolean> predicate, CancellationToken cancellationToken = default) Task<T>
LastOrDefaultAsync(this Observable<T> source, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
LastOrDefaultAsync(this Observable<T> source, Func<T, Boolean> predicate, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
LongCountAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<Int64>
LongCountAsync(this Observable<T> source, Func<T, Boolean> predicate, CancellationToken cancellationToken = default) Task<Int64>
Materialize(this Observable<T> source) Observable<Notification<T>>
MaxAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<T>
MaxAsync(this Observable<T> source, IComparer<T> comparer, CancellationToken cancellationToken = default) Task<T>
MaxAsync(this Observable<TSource> source, Func<TSource, TResult> selector, CancellationToken cancellationToken = default) Task<TResult>
MaxAsync(this Observable<TSource> source, Func<TSource, TResult> selector, IComparer<TResult> comparer, CancellationToken cancellationToken = default) Task<TResult>
MaxByAsync(this Observable<T> source, Func<T, TKey> keySelector, CancellationToken cancellationToken = default) Task<T>
MaxByAsync(this Observable<T> source, Func<T, TKey> keySelector, IComparer<TKey> comparer, CancellationToken cancellationToken = default) Task<T>
Merge(this Observable<T> source, Observable<T> second) Observable<T>
MinAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<T>
MinAsync(this Observable<T> source, IComparer<T> comparer, CancellationToken cancellationToken = default) Task<T>
MinAsync(this Observable<TSource> source, Func<TSource, TResult> selector, CancellationToken cancellationToken = default) Task<TResult>
MinAsync(this Observable<TSource> source, Func<TSource, TResult> selector, IComparer<TResult> comparer, CancellationToken cancellationToken = default) Task<TResult>
MinByAsync(this Observable<T> source, Func<T, TKey> keySelector, CancellationToken cancellationToken = default) Task<T>
MinByAsync(this Observable<T> source, Func<T, TKey> keySelector, IComparer<TKey> comparer, CancellationToken cancellationToken = default) Task<T>
MinMaxAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<ValueTuple<T, T>>
MinMaxAsync(this Observable<T> source, IComparer<T> comparer, CancellationToken cancellationToken = default) Task<ValueTuple<T, T>>
MinMaxAsync(this Observable<TSource> source, Func<TSource, TResult> selector, CancellationToken cancellationToken = default) Task<ValueTuple<TResult, TResult>>
MinMaxAsync(this Observable<TSource> source, Func<TSource, TResult> selector, IComparer<TResult> comparer, CancellationToken cancellationToken = default) Task<ValueTuple<TResult, TResult>>
Multicast(this Observable<T> source, ISubject<T> subject) ConnectableObservable<T>
ObserveOn(this Observable<T> source, SynchronizationContext synchronizationContext) Observable<T>
ObserveOn(this Observable<T> source, TimeProvider timeProvider) Observable<T>
ObserveOn(this Observable<T> source, FrameProvider frameProvider) Observable<T>
ObserveOnCurrentSynchronizationContext(this Observable<T> source) Observable<T>
ObserveOnThreadPool(this Observable<T> source) Observable<T>
OfType(this Observable<T> source) Observable<TResult>
OnErrorResumeAsFailure(this Observable<T> source) Observable<T>
Pairwise(this Observable<T> source) Observable<ValueTuple<T, T>>
Prepend(this Observable<T> source, T value) Observable<T>
Prepend(this Observable<T> source, IEnumerable<T> values) Observable<T>
Prepend(this Observable<T> source, Func<T> valueFactory) Observable<T>
Prepend(this Observable<T> source, TState state, Func<TState, T> valueFactory) Observable<T>
Publish(this Observable<T> source) ConnectableObservable<T>
Publish(this Observable<T> source, T initialValue) ConnectableObservable<T>
RefCount(this ConnectableObservable<T> source) Observable<T>
Replay(this Observable<T> source) ConnectableObservable<T>
Replay(this Observable<T> source, Int32 bufferSize) ConnectableObservable<T>
Replay(this Observable<T> source, TimeSpan window) ConnectableObservable<T>
Replay(this Observable<T> source, TimeSpan window, TimeProvider timeProvider) ConnectableObservable<T>
Replay(this Observable<T> source, Int32 bufferSize, TimeSpan window) ConnectableObservable<T>
Replay(this Observable<T> source, Int32 bufferSize, TimeSpan window, TimeProvider timeProvider) ConnectableObservable<T>
ReplayFrame(this Observable<T> source, Int32 window) ConnectableObservable<T>
ReplayFrame(this Observable<T> source, Int32 window, FrameProvider frameProvider) ConnectableObservable<T>
ReplayFrame(this Observable<T> source, Int32 bufferSize, Int32 window) ConnectableObservable<T>
ReplayFrame(this Observable<T> source, Int32 bufferSize, Int32 window, FrameProvider frameProvider) ConnectableObservable<T>
Scan(this Observable<TSource> source, Func<TSource, TSource, TSource> accumulator) Observable<TSource>
Scan(this Observable<TSource> source, TAccumulate seed, Func<TAccumulate, TSource, TAccumulate> accumulator) Observable<TAccumulate>
Select(this Observable<T> source, Func<T, TResult> selector) Observable<TResult>
Select(this Observable<T> source, Func<T, Int32, TResult> selector) Observable<TResult>
Select(this Observable<T> source, TState state, Func<T, TState, TResult> selector) Observable<TResult>
Select(this Observable<T> source, TState state, Func<T, Int32, TState, TResult> selector) Observable<TResult>
SelectAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask<TResult>> selector, AwaitOperation awaitOperation = AwaitOperation.Sequential, Boolean configureAwait = true, Boolean cancelOnCompleted = true, Int32 maxConcurrent = -1) Observable<TResult>
SelectMany(this Observable<TSource> source, Func<TSource, Observable<TResult>> selector) Observable<TResult>
SelectMany(this Observable<TSource> source, Func<TSource, Observable<TCollection>> collectionSelector, Func<TSource, TCollection, TResult> resultSelector) Observable<TResult>
SelectMany(this Observable<TSource> source, Func<TSource, Int32, Observable<TResult>> selector) Observable<TResult>
SelectMany(this Observable<TSource> source, Func<TSource, Int32, Observable<TCollection>> collectionSelector, Func<TSource, Int32, TCollection, Int32, TResult> resultSelector) Observable<TResult>
SequenceEqualAsync(this Observable<T> source, Observable<T> second, CancellationToken cancellationToken = default) Task<Boolean>
SequenceEqualAsync(this Observable<T> source, Observable<T> second, IEqualityComparer<T> equalityComparer, CancellationToken cancellationToken = default) Task<Boolean>
Share(this Observable<T> source) Observable<T>
SingleAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<T>
SingleAsync(this Observable<T> source, Func<T, Boolean> predicate, CancellationToken cancellationToken = default) Task<T>
SingleOrDefaultAsync(this Observable<T> source, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
SingleOrDefaultAsync(this Observable<T> source, Func<T, Boolean> predicate, T defaultValue = default, CancellationToken cancellationToken = default) Task<T>
Skip(this Observable<T> source, Int32 count) Observable<T>
Skip(this Observable<T> source, TimeSpan duration) Observable<T>
Skip(this Observable<T> source, TimeSpan duration, TimeProvider timeProvider) Observable<T>
SkipFrame(this Observable<T> source, Int32 frameCount) Observable<T>
SkipFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
SkipLast(this Observable<T> source, Int32 count) Observable<T>
SkipLast(this Observable<T> source, TimeSpan duration) Observable<T>
SkipLast(this Observable<T> source, TimeSpan duration, TimeProvider timeProvider) Observable<T>
SkipLastFrame(this Observable<T> source, Int32 frameCount) Observable<T>
SkipLastFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
SkipUntil(this Observable<T> source, Observable<TOther> other) Observable<T>
SkipUntil(this Observable<T> source, CancellationToken cancellationToken) Observable<T>
SkipUntil(this Observable<T> source, Task task) Observable<T>
SkipUntil(this Observable<T> source, Func<T, CancellationToken, ValueTask> asyncFunc, Boolean configureAwait = true) Observable<T>
SkipWhile(this Observable<T> source, Func<T, Boolean> predicate) Observable<T>
SkipWhile(this Observable<T> source, Func<T, Int32, Boolean> predicate) Observable<T>
SubscribeAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask> onNextAsync, AwaitOperation awaitOperation = AwaitOperation.Sequential, Boolean configureAwait = true, Boolean cancelOnCompleted = true, Int32 maxConcurrent = -1) IDisposable
SubscribeAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask> onNextAsync, Action<Result> onCompleted, AwaitOperation awaitOperation = AwaitOperation.Sequential, Boolean configureAwait = true, Boolean cancelOnCompleted = true, Int32 maxConcurrent = -1) IDisposable
SubscribeAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask> onNextAsync, Action<Exception> onErrorResume, Action<Result> onCompleted, AwaitOperation awaitOperation = AwaitOperation.Sequential, Boolean configureAwait = true, Boolean cancelOnCompleted = true, Int32 maxConcurrent = -1) IDisposable
SubscribeOn(this Observable<T> source, SynchronizationContext synchronizationContext) Observable<T>
SubscribeOn(this Observable<T> source, TimeProvider timeProvider) Observable<T>
SubscribeOn(this Observable<T> source, FrameProvider frameProvider) Observable<T>
SubscribeOnCurrentSynchronizationContext(this Observable<T> source) Observable<T>
SubscribeOnThreadPool(this Observable<T> source) Observable<T>
SumAsync(this Observable<Int32> source, CancellationToken cancellationToken = default) Task<Int32>
SumAsync(this Observable<TSource> source, Func<TSource, Int32> selector, CancellationToken cancellationToken = default) Task<Int32>
SumAsync(this Observable<Int64> source, CancellationToken cancellationToken = default) Task<Int64>
SumAsync(this Observable<TSource> source, Func<TSource, Int64> selector, CancellationToken cancellationToken = default) Task<Int64>
SumAsync(this Observable<Single> source, CancellationToken cancellationToken = default) Task<Single>
SumAsync(this Observable<TSource> source, Func<TSource, Single> selector, CancellationToken cancellationToken = default) Task<Single>
SumAsync(this Observable<Double> source, CancellationToken cancellationToken = default) Task<Double>
SumAsync(this Observable<TSource> source, Func<TSource, Double> selector, CancellationToken cancellationToken = default) Task<Double>
SumAsync(this Observable<Decimal> source, CancellationToken cancellationToken = default) Task<Decimal>
SumAsync(this Observable<TSource> source, Func<TSource, Decimal> selector, CancellationToken cancellationToken = default) Task<Decimal>
SumAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<T>
SumAsync(this Observable<TSource> source, Func<TSource, TResult> selector, CancellationToken cancellationToken = default) Task<TResult>
Switch(this Observable<Observable<T>> sources) Observable<T>
Synchronize(this Observable<T> source) Observable<T>
Synchronize(this Observable<T> source, Object gate) Observable<T>
Take(this Observable<T> source, Int32 count) Observable<T>
Take(this Observable<T> source, TimeSpan duration) Observable<T>
Take(this Observable<T> source, TimeSpan duration, TimeProvider timeProvider) Observable<T>
TakeFrame(this Observable<T> source, Int32 frameCount) Observable<T>
TakeFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
TakeLast(this Observable<T> source, Int32 count) Observable<T>
TakeLast(this Observable<T> source, TimeSpan duration) Observable<T>
TakeLast(this Observable<T> source, TimeSpan duration, TimeProvider timeProvider) Observable<T>
TakeLastFrame(this Observable<T> source, Int32 frameCount) Observable<T>
TakeLastFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
TakeUntil(this Observable<T> source, Observable<TOther> other) Observable<T>
TakeUntil(this Observable<T> source, CancellationToken cancellationToken) Observable<T>
TakeUntil(this Observable<T> source, Task task) Observable<T>
TakeUntil(this Observable<T> source, Func<T, CancellationToken, ValueTask> asyncFunc, Boolean configureAwait = true) Observable<T>
TakeWhile(this Observable<T> source, Func<T, Boolean> predicate) Observable<T>
TakeWhile(this Observable<T> source, Func<T, Int32, Boolean> predicate) Observable<T>
ThrottleFirst(this Observable<T> source, TimeSpan timeSpan) Observable<T>
ThrottleFirst(this Observable<T> source, TimeSpan timeSpan, TimeProvider timeProvider) Observable<T>
ThrottleFirst(this Observable<T> source, Observable<TSample> sampler) Observable<T>
ThrottleFirst(this Observable<T> source, Func<T, CancellationToken, ValueTask> sampler, Boolean configureAwait = true) Observable<T>
ThrottleFirstFrame(this Observable<T> source, Int32 frameCount) Observable<T>
ThrottleFirstFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
ThrottleFirstLast(this Observable<T> source, TimeSpan timeSpan) Observable<T>
ThrottleFirstLast(this Observable<T> source, TimeSpan timeSpan, TimeProvider timeProvider) Observable<T>
ThrottleFirstLast(this Observable<T> source, Observable<TSample> sampler) Observable<T>
ThrottleFirstLast(this Observable<T> source, Func<T, CancellationToken, ValueTask> sampler, Boolean configureAwait = true) Observable<T>
ThrottleFirstLastFrame(this Observable<T> source, Int32 frameCount) Observable<T>
ThrottleFirstLastFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
ThrottleLast(this Observable<T> source, TimeSpan timeSpan) Observable<T>
ThrottleLast(this Observable<T> source, TimeSpan timeSpan, TimeProvider timeProvider) Observable<T>
ThrottleLast(this Observable<T> source, Observable<TSample> sampler) Observable<T>
ThrottleLast(this Observable<T> source, Func<T, CancellationToken, ValueTask> sampler, Boolean configureAwait = true) Observable<T>
ThrottleLastFrame(this Observable<T> source, Int32 frameCount) Observable<T>
ThrottleLastFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
TimeInterval(this Observable<T> source) Observable<ValueTuple<TimeSpan, T>>
TimeInterval(this Observable<T> source, TimeProvider timeProvider) Observable<ValueTuple<TimeSpan, T>>
Timeout(this Observable<T> source, TimeSpan dueTime) Observable<T>
Timeout(this Observable<T> source, TimeSpan dueTime, TimeProvider timeProvider) Observable<T>
TimeoutFrame(this Observable<T> source, Int32 frameCount) Observable<T>
TimeoutFrame(this Observable<T> source, Int32 frameCount, FrameProvider frameProvider) Observable<T>
Timestamp(this Observable<T> source) Observable<ValueTuple<Int64, T>>
Timestamp(this Observable<T> source, TimeProvider timeProvider) Observable<ValueTuple<Int64, T>>
ToArrayAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<T[]>
ToAsyncEnumerable(this Observable<T> source, CancellationToken cancellationToken = default) IAsyncEnumerable<T>
ToDictionaryAsync(this Observable<T> source, Func<T, TKey> keySelector, CancellationToken cancellationToken = default) Task<Dictionary<TKey, T>>
ToDictionaryAsync(this Observable<T> source, Func<T, TKey> keySelector, IEqualityComparer<TKey> keyComparer, CancellationToken cancellationToken = default) Task<Dictionary<TKey, T>>
ToDictionaryAsync(this Observable<T> source, Func<T, TKey> keySelector, Func<T, TElement> elementSelector, CancellationToken cancellationToken = default) Task<Dictionary<TKey, TElement>>
ToDictionaryAsync(this Observable<T> source, Func<T, TKey> keySelector, Func<T, TElement> elementSelector, IEqualityComparer<TKey> keyComparer, CancellationToken cancellationToken = default) Task<Dictionary<TKey, TElement>>
ToHashSetAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<HashSet<T>>
ToHashSetAsync(this Observable<T> source, IEqualityComparer<T> comparer, CancellationToken cancellationToken = default) Task<HashSet<T>>
ToListAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task<List<T>>
ToLiveList(this Observable<T> source) LiveList<T>
ToLiveList(this Observable<T> source, Int32 bufferSize) LiveList<T>
ToLookupAsync(this Observable<T> source, Func<T, TKey> keySelector, CancellationToken cancellationToken = default) Task<ILookup<TKey, T>>
ToLookupAsync(this Observable<T> source, Func<T, TKey> keySelector, IEqualityComparer<TKey> keyComparer, CancellationToken cancellationToken = default) Task<ILookup<TKey, T>>
ToLookupAsync(this Observable<T> source, Func<T, TKey> keySelector, Func<T, TElement> elementSelector, CancellationToken cancellationToken = default) Task<ILookup<TKey, TElement>>
ToLookupAsync(this Observable<T> source, Func<T, TKey> keySelector, Func<T, TElement> elementSelector, IEqualityComparer<TKey> keyComparer, CancellationToken cancellationToken = default) Task<ILookup<TKey, TElement>>
Trampoline(this Observable<T> source) Observable<T>
WaitAsync(this Observable<T> source, CancellationToken cancellationToken = default) Task
Where(this Observable<T> source, Func<T, Boolean> predicate) Observable<T>
Where(this Observable<T> source, Func<T, Int32, Boolean> predicate) Observable<T>
Where(this Observable<T> source, TState state, Func<T, TState, Boolean> predicate) Observable<T>
Where(this Observable<T> source, TState state, Func<T, Int32, TState, Boolean> predicate) Observable<T>
WhereAwait(this Observable<T> source, Func<T, CancellationToken, ValueTask<Boolean>> predicate, AwaitOperation awaitOperation = AwaitOperation.Sequential, Boolean configureAwait = true, Boolean cancelOnCompleted = true, Int32 maxConcurrent = -1) Observable<T>
WithLatestFrom(this Observable<TFirst> first, Observable<TSecond> second, Func<TFirst, TSecond, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Func<T1, T2, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Func<T1, T2, T3, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Func<T1, T2, T3, T4, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Func<T1, T2, T3, T4, T5, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Func<T1, T2, T3, T4, T5, T6, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Func<T1, T2, T3, T4, T5, T6, T7, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Func<T1, T2, T3, T4, T5, T6, T7, T8, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Observable<T14> source14, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, TResult> resultSelector) Observable<TResult>
Zip(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Observable<T14> source14, Observable<T15> source15, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Func<T1, T2, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Func<T1, T2, T3, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Func<T1, T2, T3, T4, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Func<T1, T2, T3, T4, T5, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Func<T1, T2, T3, T4, T5, T6, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Func<T1, T2, T3, T4, T5, T6, T7, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Func<T1, T2, T3, T4, T5, T6, T7, T8, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Observable<T14> source14, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, TResult> resultSelector) Observable<TResult>
ZipLatest(this Observable<T1> source1, Observable<T2> source2, Observable<T3> source3, Observable<T4> source4, Observable<T5> source5, Observable<T6> source6, Observable<T7> source7, Observable<T8> source8, Observable<T9> source9, Observable<T10> source10, Observable<T11> source11, Observable<T12> source12, Observable<T13> source13, Observable<T14> source14, Observable<T15> source15, Func<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, TResult> resultSelector) Observable<TResult>

In dotnet/reactive, methods that return a single IObservable<T> (such as First) are all provided only as ***Async, returning Task<T>. Additionally, to align with the naming of Enumerable, Buffer has been changed to Chunk.

Throttle has been changed to Debounce, and Sample has been changed to ThrottleLast. Originally in dotnet/reactive, there were only Throttle and Sample. But Sample needs both first and last, and many Rx libraries defined it as ThrottleFirst, the behavior of ThrottleFirst is similar to Sample (which is ThrottleLast), whereas Throttle has a completely different behavior. Therefore, Throttle was changed to the more commonly used Debounce, and Sample was changed to ThrottleLast for symmetry with ThrottleFirst. Additionally, I am opposed to keeping Sample as an alias for ThrottleLast. As a result of such methods being maintained, other libraries often receive questions like "What is the difference between ThrottleLast and Sample?"

Class/Method name changes from dotnet/reactive and neuecc/UniRx

  • Buffer -> Chunk
  • BatchFrame -> ChunkFrame
  • Throttle -> Debounce
  • ThrottleFrame -> DebounceFrame
  • Sample -> ThrottleLast
  • SampleFrame -> ThrottleLastFrame
  • StartWith -> Prepend
  • ObserveEveryValueChanged(this T value) -> Observable.EveryValueChanged(T value)
  • Distinct(selector) -> DistinctBy
  • DistinctUntilChanged(selector) -> DistinctUntilChangedBy
  • Finally -> Do(onDisposed:)
  • Do*** -> Do(on***:)
  • BehaviorSubject -> ReactiveProperty
  • AsyncSubject<T> -> TaskCompletionSource<T>
  • StableCompositeDisposable -> Disposable.Combine
  • IScheduler -> TimeProvider
  • Return single value methods -> ***Async (or Take(1), TakeLast(1))
  • ToTask(), ToUniTask() -> LastAsync() or FirstAsync()
  • IReadOnlyReactiveProperty.Value -> ReadOnlyReactiveProperty.CurrentValue
  • ReactiveProperty.SkipLatestValueOnSubscribe() โ†’ .Skip(1)
  • MainThreadDispatcher.OnApplicationQuitAsObservable โ†’ Application.exitCancellationToken
  • ReactiveCollection / ReactiveDictionary -> ObservableCollections.R3
  • ObjectPool in UniRx -> use UniTask and make yourself
  • MessageBroker in UniRx -> MessagePipe
  • Logger in UniRx -> ZLogger

Similar to IObservable<T>, if you want to stop the stream when an OnErrorResume occurs, you connect OnErrorResumeAsFailure in the method chain.

License

This library is under the MIT License.

More Repositories

1

UniTask

Provides an efficient allocation free async/await integration for Unity.
C#
8,201
star
2

MagicOnion

Unified Realtime/API framework for .NET platform and Unity.
C#
3,838
star
3

MemoryPack

Zero encoding extreme performance binary serializer for C# and Unity.
C#
3,288
star
4

ZString

Zero Allocation StringBuilder for .NET and Unity.
C#
2,060
star
5

ConsoleAppFramework

Zero Dependency, Zero Overhead, Zero Reflection, Zero Allocation, AOT Safe CLI Framework powered by C# Source Generator.
C#
1,635
star
6

MasterMemory

Embedded Typed Readonly In-Memory Document Database for .NET and Unity.
C#
1,521
star
7

MessagePipe

High performance in-memory/distributed messaging pipeline for .NET and Unity.
C#
1,406
star
8

Ulid

Fast .NET C# Implementation of ULID for .NET and Unity.
C#
1,314
star
9

ZLogger

Zero Allocation Text/Structured Logger for .NET with StringInterpolation and Source Generator, built on top of a Microsoft.Extensions.Logging.
C#
1,262
star
10

SimdLinq

Drop-in replacement of LINQ aggregation operations extremely faster with SIMD.
C#
775
star
11

csbindgen

Generate C# FFI from Rust for automatically brings native code and C native library to .NET and Unity.
Rust
688
star
12

ObservableCollections

High performance observable collections and synchronized views, for WPF, Blazor, Unity.
C#
559
star
13

ProcessX

Simplify call an external process with the async streams in C# 8.0.
C#
453
star
14

YetAnotherHttpHandler

YetAnotherHttpHandler brings the power of HTTP/2 (and gRPC) to Unity and .NET Standard.
C#
354
star
15

UnitGenerator

C# Source Generator to create value-object, inspired by units of measure.
C#
330
star
16

RuntimeUnitTestToolkit

CLI/GUI Frontend of Unity Test Runner to test on any platform.
C#
300
star
17

AlterNats

An alternative high performance NATS client for .NET.
C#
284
star
18

NativeMemoryArray

Utilized native-memory backed array for .NET and Unity - over the 2GB limitation and support the modern API(IBufferWriter, ReadOnlySequence, scatter/gather I/O, etc...).
C#
276
star
19

StructureOfArraysGenerator

Structure of arrays source generator to make CPU Cache and SIMD friendly data structure for high-performance code in .NET and Unity.
C#
262
star
20

MagicPhysX

.NET PhysX 5 binding to all platforms(win, osx, linux) for 3D engine, deep learning, dedicated server of gaming.
Rust
258
star
21

PrivateProxy

Source Generator and .NET 8 UnsafeAccessor based high-performance strongly-typed private accessor for unit testing and runtime.
C#
239
star
22

KcpTransport

KcpTransport is a Pure C# implementation of RUDP for high-performance real-time network communication
C#
237
star
23

LogicLooper

A library for building server application using loop-action programming model on .NET.
C#
237
star
24

DFrame

Distributed load testing framework for .NET and Unity.
C#
223
star
25

Utf8StreamReader

Utf8 based StreamReader for high performance text processing.
C#
208
star
26

LitJWT

Lightweight, Fast JWT(JSON Web Token) implementation for .NET.
C#
199
star
27

Claudia

Unofficial Anthropic Claude API client for .NET.
C#
162
star
28

CsprojModifier

CsprojModifier performs additional processing when Unity Editor generates the .csproj.
C#
154
star
29

Utf8StringInterpolation

Successor of ZString; UTF8 based zero allocation high-peformance String Interpolation and StringBuilder.
C#
153
star
30

ValueTaskSupplement

Append supplemental methods(WhenAny, WhenAll, Lazy) to ValueTask.
C#
135
star
31

Kokuban

Simplifies styling strings in the terminal for .NET application.
C#
123
star
32

SlnMerge

SlnMerge merges the solution files when generating solution file by Unity Editor.
C#
114
star
33

GrpcWebSocketBridge

Yet Another gRPC over HTTP/1 using WebSocket implementation, primarily targets .NET platform.
C#
76
star
34

WebSerializer

Convert Object into QueryString/FormUrlEncodedContent for C# HttpClient REST Request.
C#
65
star
35

RandomFixtureKit

Fill random/edge-case value to target type for unit testing, supports both .NET Standard and Unity.
C#
46
star
36

Actions

41
star
37

DocfxTemplate

Patchworked DocFX v2 template for Cysharp
JavaScript
7
star
38

Multicaster

A framework for transparently invoking multiple instances or clients.
C#
5
star
39

com.unity.ide.visualstudio-backport

Backport of com.unity.ide.visualstudio to before Unity 2019.4.21
C#
1
star