spark-kafka-writer
Write your Spark data to Kafka seamlessly
Installation
spark-kafka-writer is available on maven central with the following coordinates depending on whether you're using Kafka 0.8 or 0.10 and your version of Spark:
Kafka 0.8 | Kafka 0.10 | |
---|---|---|
Spark 2.4.X | "com.github.benfradet" %% "spark-kafka-writer" % "0.5.0" |
|
Spark 2.2.X | β | "com.github.benfradet" %% "spark-kafka-writer" % "0.4.0" |
Spark 2.1.X | "com.github.benfradet" %% "spark-kafka-0-8-writer" % "0.3.0" |
"com.github.benfradet" %% "spark-kafka-0-10-writer" % "0.3.0" |
Spark 2.0.X | "com.github.benfradet" %% "spark-kafka-0-8-writer" % "0.2.0" |
"com.github.benfradet" %% "spark-kafka-0-10-writer" % "0.2.0" |
Spark 1.6.X | "com.github.benfradet" %% "spark-kafka-writer" % "0.1.0" |
Usage
Without callbacks
- if you want to save an
RDD
to Kafka:
import com.github.benfradet.spark.kafka.writer._
import org.apache.kafka.common.serialization.StringSerializer
val topic = "my-topic"
val producerConfig = Map(
"bootstrap.servers" -> "127.0.0.1:9092",
"key.serializer" -> classOf[StringSerializer].getName,
"value.serializer" -> classOf[StringSerializer].getName
)
val rdd: RDD[String] = ...
rdd.writeToKafka(
producerConfig,
s => new ProducerRecord[String, String](topic, s)
)
- if you want to save a
DStream
to Kafka:
import com.github.benfradet.spark.kafka.writer._
import org.apache.kafka.common.serialization.StringSerializer
val dStream: DStream[String] = ...
dStream.writeToKafka(
producerConfig,
s => new ProducerRecord[String, String](topic, s)
)
- if you want to save a
Dataset
to Kafka:
import com.github.benfradet.spark.kafka.writer._
import org.apache.kafka.common.serialization.StringSerializer
case class Foo(a: Int, b: String)
val dataset: Dataset[Foo] = ...
dataset.writeToKafka(
producerConfig,
foo => new ProducerRecord[String, String](topic, foo.toString)
)
- if you want to write a
DataFrame
to Kafka:
import com.github.benfradet.spark.kafka.writer._
import org.apache.kafka.common.serialization.StringSerializer
val dataFrame: DataFrame = ...
dataFrame.writeToKafka(
producerConfig,
row => new ProducerRecord[String, String](topic, row.toString)
)
With callbacks
It is also possible to assign a Callback
from the Kafka Producer API that will
be triggered after each write, this has a default value of None.
The Callback
must implement the onCompletion
method and the Exception
parameter will be null
if the write was successful.
Any Callback
implementations will need to be serializable to be used in Spark.
For example, if you want to use a Callback
when saving an RDD
to Kafka:
// replace by kafka08 if you're using Kafka 0.8
import com.github.benfradet.spark.kafka010.writer._
import org.apache.kafka.clients.producer.{Callback, ProducerRecord, RecordMetadata}
@transient lazy val log = org.apache.log4j.Logger.getLogger("spark-kafka-writer")
val rdd: RDD[String] = ...
rdd.writeToKafka(
producerConfig,
s => new ProducerRecord[String, String](topic, s),
Some(new Callback with Serializable {
override def onCompletion(metadata: RecordMetadata, e: Exception): Unit = {
if (Option(e).isDefined) {
log.warn("error sending message", e)
} else {
log.info(s"write succeeded! offset: ${metadata.offset()}")
}
}
})
)
Check out the Kafka documentation to know more about callbacks.
Java usage
It's also possible to use the library from Java, for example if we were to write a DStream
to Kafka:
// Define a serializable Function1 separately
abstract class SerializableFunc1<T, R> extends AbstractFunction1<T, R> implements Serializable {}
Map<String, Object> producerConfig = new HashMap<String, Object>();
producerConfig.put("bootstrap.servers", "localhost:9092");
producerConfig.put("key.serializer", StringSerializer.class);
producerConfig.put("value.serializer", StringSerializer.class);
KafkaWriter<String> kafkaWriter = new DStreamKafkaWriter<>(javaDStream.dstream(),
scala.reflect.ClassTag$.MODULE$.apply(String.class));
kafkaWriter.writeToKafka(producerConfig.asScala,
new SerializableFunc1<String, ProducerRecord<String, String>>() {
@Override
public ProducerRecord<String, String> apply(final String s) {
return new ProducerRecord<>(topic, s);
}
},
//new Some<>((metadata, exception) -> {}), // with callback, define your lambda here.
Option.empty() // or without callback.
);
However, #59 will provide a better Java API.
Scaladoc
You can find the full scaladoc at https://benfradet.github.io/spark-kafka-writer.
Credit
The original code was written by Hari Shreedharan.