• Stars
    star
    9
  • Rank 1,939,727 (Top 39 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created over 6 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

In recent times, toxicological classification of chemical compounds is considered to be a grand challenge for pharma-ceutical and environment regulators. Advancement in machine learning techniques enabled efficient toxicity predic-tion pipelines. Random forests (RF), support vector machines (SVM) and deep neural networks (DNN) are often ap-plied to model the toxic effects of chemical compounds. However, complexity-accuracy tradeoff still needs to be ac-counted in order to improve the efficiency and commercial deployment of these methods. In this study, we implement a hybrid framework consists of a shallow neural network and a decision classifier for toxicity prediction of chemicals that interrupt nuclear receptor (NR) and stress response (SR) signaling pathways. A model based on proposed hybrid framework is trained on Tox21 data using 2D chemical descriptors that are less multifarious in nature and easy to calcu-late. Our method achieved the highest accuracy of 0.847 AUC (area under the curve) using a shallow neural network with only one hidden layer consisted of 10 neurons. Furthermore, our hybrid model enabled us to elucidate the inter-pretation of most important descriptors responsible for NR and SR toxicity.