• This repository has been archived on 21/Nov/2023
  • Stars
    star
    140
  • Rank 259,935 (Top 6 %)
  • Language
    Python
  • License
    GNU Affero Genera...
  • Created over 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[ICMLC 2018] A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection

A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection

DOI AUR

This is an accepted paper at the 10th International Conference on Machine Learning and Computing (ICMLC) in Macau, China on February 26-28, 2018.

The full paper on this project may be read at arXiv.org.

Illustration by Andreina Mariella A. Miling. The proposed neural network architecture combines the gated recurrent unit (GRU) variant of recurrent neural network (RNN) and the linear support vector machine (SVM). The SVM is then used as the classifier of the neural network.

Abstract

Gated Recurrent Unit (GRU) is a recently-developed variation of the long short-term memory (LSTM) unit, both of which are variants of recurrent neural network (RNN). Through empirical evidence, both models have been proven to be effective in a wide variety of machine learning tasks such as natural language processing (Wen et al., 2015), speech recognition (Chorowski et al., 2015), and text classification (Yang et al., 2016). Conventionally, like most neural networks, both of the aforementioned RNN variants employ the Softmax function as its final output layer for its prediction, and the cross-entropy function for computing its loss. In this paper, we present an amendment to this norm by introducing linear support vector machine (SVM) as the replacement for Softmax in the final output layer of a GRU model. Furthermore, the cross-entropy function shall be replaced with a margin-based function. While there have been similar studies (Alalshekmubarak & Smith, 2013; Tang, 2013), this proposal is primarily intended for binary classification on intrusion detection using the 2013 network traffic data from the honeypot systems of Kyoto University. Results show that the GRU-SVM model performs relatively higher than the conventional GRU-Softmax model. The proposed model reached a training accuracy of ~81.54% and a testing accuracy of ~84.15%, while the latter was able to reach a training accuracy of ~63.07% and a testing accuracy of ~70.75%. In addition, the juxtaposition of these two final output layers indicate that the SVM would outperform Softmax in prediction time - a theoretical implication which was supported by the actual training and testing time in the study.

Citation

To cite the paper, kindly use the following BibTex entry:

@inproceedings{agarap2018neural,
  title={A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data},
  author={Agarap, Abien Fred M},
  booktitle={Proceedings of the 2018 10th International Conference on Machine Learning and Computing},
  pages={26--30},
  year={2018},
  organization={ACM}
}

To cite the repository/software, kindly use the following BibTex entry:

@misc{abien_fred_agarap_2017_1045887,
  author       = {Abien Fred Agarap},
  title        = {AFAgarap/gru-svm v0.3.11-alpha},
  month        = nov,
  year         = 2017,
  doi          = {10.5281/zenodo.1045887},
  url          = {https://doi.org/10.5281/zenodo.1045887}
}

Usage

First, clone this repository:

git clone https://github.com/AFAgarap/gru-svm.git/

Then, install the required libraries:

sudo pip install -r requirements.txt

The following are the parameters for the module (gru_svm_main.py) implementing the GRU-SVM class found in gru-svm/models/gru_svm/gru_svm.py:

usage: gru_svm_main.py [-h] -o OPERATION [-t TRAIN_DATASET] -v
                       VALIDATION_DATASET -c CHECKPOINT_PATH [-l LOG_PATH]
                       [-m MODEL_NAME] -r RESULT_PATH

GRU+SVM for Intrusion Detection

optional arguments:
  -h, --help            show this help message and exit

Arguments:
  -o OPERATION, --operation OPERATION
                        the operation to perform: "train" or "test"
  -t TRAIN_DATASET, --train_dataset TRAIN_DATASET
                        the NumPy array training dataset (*.npy) to be used
  -v VALIDATION_DATASET, --validation_dataset VALIDATION_DATASET
                        the NumPy array validation dataset (*.npy) to be used
  -c CHECKPOINT_PATH, --checkpoint_path CHECKPOINT_PATH
                        path where to save the trained model
  -l LOG_PATH, --log_path LOG_PATH
                        path where to save the TensorBoard logs
  -m MODEL_NAME, --model_name MODEL_NAME
                        filename for the trained model
  -r RESULT_PATH, --result_path RESULT_PATH
                        path where to save the actual and predicted labels

Then, use the sample data in gru-svm/dataset/train/train_data.npy for training the proposed GRU-SVM:

cd gru-svm
python3 gru_svm_main.py --operation "train" \
--train_dataset dataset/train/train_data.npy \
--validation_dataset dataset/test/test_data.npy \
--checkpoint_path models/checkpoint/gru_svm \
--model_name gru_svm.ckpt \
--log_path models/logs/gru_svm \
--result_path results/gru_svm

After training, the model can be used as follows:

python3 gru_svm_main.py --operation "test" \
--validation_dataset dataset/test/test_data.npy \
--checkpoint_path models/checkpoint/gru_svm \
--result_path results/gru_svm

Or simply use the prepared script files:

# Makes the script files executable
sudo chmod +x setup.sh
sudo chmod +x run.sh

# Installs the pre-requisite software and libraries
./setup.sh

# Runs the GRU-SVM for intrusion detection
./run.sh

Results

The results of the study may be found in gru-svm/results.

License

A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and
Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data
Copyright (C) 2017  Abien Fred Agarap

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

More Repositories

1

cnn-svm

An Architecture Combining Convolutional Neural Network (CNN) and Linear Support Vector Machine (SVM) for Image Classification
Python
330
star
2

malware-classification

Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach using Support Vector Machine for Malware Classification
Python
157
star
3

wisconsin-breast-cancer

[ICMLSC 2018] On Breast Cancer Detection: An Application of Machine Learning Algorithms on the Wisconsin Diagnostic Dataset
Python
52
star
4

dl-relu

Deep Learning using Rectified Linear Units (ReLU)
Jupyter Notebook
20
star
5

support-vector-machine

An implementation of the L2-SVM for breast cancer detection using the Wisconsin diagnostic dataset.
Python
18
star
6

ecommerce-reviews-analysis

Statistical Analysis on E-Commerce Reviews, with Sentiment Classification using Bidirectional Recurrent Neural Network (RNN)
Jupyter Notebook
16
star
7

pt-clustering-ae

Code implementation for "Improving k-Means Clustering Performance with Disentangled Internal Representations" by Agarap & Azcarraga (2020)
Python
14
star
8

opencv-python-training

OpenCV-Python Tutorials
Jupyter Notebook
13
star
9

feed-forward-neural-network

An implementation of the Multilayer Perceptron for breast cancer detection using the Wisconsin diagnostic dataset.
Python
8
star
10

pt-datasets

PyTorch dataset loader for image, text, malware, and medical classification datasets
Python
6
star
11

vanishing-gradients

Avoiding the vanishing gradients problem by adding random noise and batch normalization
Python
5
star
12

dnn-trust

How can I trust you? An intuition and tutorial on trustΒ score
Jupyter Notebook
4
star
13

autoencoders

Jupyter Notebook
3
star
14

ag-news-ae-clustering

Using an Autoencoder to encode features for k-Means Clustering on the AG News Dataset
Python
3
star
15

cooperative-competitive-learning

Potentially helpful methods for specialized ensemble learning.
2
star
16

AFAgarap.github.io

https://afagarap.works
SCSS
1
star