Justin de Guia (@jddeguia)
  • Stars
    star
    26
  • Global Rank 542,735 (Top 19 %)
  • Followers 7
  • Registered over 4 years ago
  • Most used languages
  • Location ๐Ÿ‡ต๐Ÿ‡ญ Philippines
  • Country Total Rank 920
  • Country Ranking

Top repositories

1

compare-forecast-models

Energy production of photovoltaic (PV) system is heavily influenced by solar irradiance. Accurate prediction of solar irradiance leads to optimal dispatching of available energy resources and anticipating end-user demand. However, it is difficult to do due to fluctuating nature of weather patterns. โ€ƒIn the study, neural network models were defined to predict solar irradiance values based on weather patterns. Models included in the study are artificial neural network, convolutional neural network, bidirectional long-short term memory (LSTM) and stacked LSTM. โ€ƒPreprocessing methods such as data normalization and principal component analysis were applied before model training. Regression metrics such as mean squared error (MSE), maximum residual error (max error), mean absolute error (MAE), explained variance score (EVS), and regression score function (R2 score), were used to evaluate the performance of model prediction. Plots such as prediction curves, learning curves, and histogram of error distribution were also considered as well for further analysis of model performance. All models showed that it is capable of learning unforeseen values, however, stacked LSTM has the best results with the max error, R2, MAE, MSE, and EVS values of 651.536, 0.953, 41.738, 5124.686, and 0.946, respectively.
Jupyter Notebook
12
star
2

bagging-lstm

Implementation of bagging-based ensemble for solar irradiance prediction. Base learners used in ensemble learning is stacked-LSTM
Jupyter Notebook
11
star
3

grid-search-pca-cnn

Implementation of solar irradiance prediction model with grid-search optimization
Jupyter Notebook
3
star