Yunzhi Zhang, Shangzhe Wu, Noah Snavely, Jiajun Wu. CVPR 2023.
Create a conda environment:
conda create -n objint python=3.9
conda activate objint
Install pytorch based on your CUDA version, and other dependencies:
conda install pytorch torchvision pytorch-cuda=11.7 -c pytorch -c nvidia
pip install omegaconf tensorboard scipy opencv-python matplotlib imageio[ffmpeg]
pip install -e .
Under the project root directory, launch training on one GPU with:
python scripts/train.py -d data/example
Launch training on one or more GPUs with:
torchrun --standalone --nnodes=1 --nproc_per_node=YOUR_NUM_GPUS scripts/train.py -d data/green_crane
Checkpoints and tensorboard files will be saved under logs
.
python scripts/test.py -p YOUR_EXP_DIR
Append --force-update
if you want to recompute the results.
After 100k iterations, which takes around 12 hours on 2 GeForce RTX 3090 GPUs, you should be able to see the following results after running python scripts/test.py -p logs/_data_example -depth 16
:
Some code is borrowed from NeuS, StyleSDF, GIRAFFE, and StyleGAN2-ADA. Thanks for their amazing works!
If you find this work useful, please cite our paper:
@InProceedings{zhang2023rose,
author = {Yunzhi Zhang and Shangzhe Wu and Noah Snavely and Jiajun Wu},
title = {Seeing a Rose in Five Thousand Ways},
booktitle = {CVPR},
year = {2023}
}