Salient object detection in the deep learning era: An in-depth survey, PAMI2021
===========================================================================
Wenguan Wang, Qiuxia Lai, Huazhu Fu, Jianbing Shen, Haibin Ling, Ruigang Yang
===========================================================================
It is very welcome to send me your saliency maps if your work is published in top-level conference.
If I miss your work, please let me know and I'll add it.
===========================================================================
Google Disk: https://drive.google.com/open?id=1WSmPaUV909uWF3ycL0MLWPWM6MdSjaJ0
Baidu Disk: https://pan.baidu.com/s/1f63o_QV4za6cdcigHSwhWw extraction codeοΌjp53
Here include the saliency prediction maps for 46 major deep salient object detection (SOD) methods, a constructed dataset with annotations for attribute analysis, and codes for evaluation (see our paper for details).
===========================================================================π₯ π₯ π₯ Update
2020/1: Results of eight ICCV'19 methods are added.
2019/9: Results of eight CVPR'19 methods are added.
===========================================================================
-
Saliency prediction maps DUT.rar (DUT-OMRON dataset) DUTSTE.rar (test set of DUTS dataset) ECSSD.rar (ECSSD dataset) HKU-IS.rar (HKU-IS dataset) PASCAL-S.rar (PASCAL-S dataset) SOD.rar (SOD dataset)
-
Dataset and annotations for attribute analysis The hybrid dataset consists of 1,800 images randomly selected from 6 datasets, namely SOD, ECSSD, DUT-OMRON, PASCAL-S, HKU-IS and the test set of DUTS (300 for each). We carefully exclude images in ECSSD that also appear in SOD.
The annotations listed in ATTR_anno.xlsx cover 16 attributes from the perspectives of salient object categories, challenges and scene categories.
- Codes for evaluation Matlab codes for calculating F-max, S-measure and MAE.
===========================================================================
Citation:
@article{wang2019sodsurvey,
title={Salient Object Detection in the Deep Learning Era: An In-Depth Survey},
author={Wang, Wenguan and Lai, Qiuxia and Fu, Huazhu and Shen, Jianbing and Ling, Haibin and Yang, Ruigang},
journal={TPAMI},
year={2021},
}
If you find our dataset is useful, please cite above paper.
===========================================================================
Contact Information
Email: