• Stars
    star
    594
  • Rank 75,329 (Top 2 %)
  • Language
    C++
  • Created over 5 years ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A pathtracer for R. Build and render complex scenes and 3D data visualizations directly from R

rayrender

R build status

Overview

rayrender is an open source R package for raytracing scenes in created in R. Based off of Peter Shirley’s three books “Ray Tracing in One Weekend”, “Ray Tracing: The Next Week”, and “Ray Tracing: The Rest of Your Life”, this package provides a tidy R API to a raytracer built in C++ to render scenes built out of an array of primitives. rayrender builds scenes using a pipeable iterative interface, and supports diffuse, metallic, dielectric (glass), light emitting materials, as well as procedural and user-specified image textures and HDR environment lighting. rayrender includes multicore support (with progress bars) via RcppThread, random number generation via the PCG RNG, and .obj file support via TinyObjLoader.

Browse the documentation and see more examples at the website (if you aren’t already there):

rayrender.net

Installation

# To install the latest version from Github:
# install.packages("devtools")
devtools::install_github("tylermorganwall/rayrender")

Usage

We’ll first start by rendering a simple scene consisting of the ground, a sphere, and the included R.obj file. The location of the R.obj file can be accessed by calling the function r_obj(). First adding the ground using the render_ground() function. This renders an extremely large sphere that (at our scene’s scale) functions as a flat surface. We also add a simple blue sphere to the scene.

library(rayrender)

scene = generate_ground(material=diffuse(checkercolor="grey20")) %>%
  add_object(sphere(y=0.2,material=glossy(color="#2b6eff",reflectance=0.05))) 
render_scene(scene, parallel = TRUE, width = 800, height = 800, samples = 1000)

By default, a scene without any lights includes a blue sky. We can turn this off either by setting ambient_light = FALSE, or by adding a light to our scene. We will add an emissive sphere above and behind our camera.

scene = generate_ground(material=diffuse(checkercolor="grey20")) %>%
  add_object(sphere(y=0.2,material=glossy(color="#2b6eff",reflectance=0.05))) %>%
  add_object(sphere(y=6,z=1,radius=4,material=light(intensity=8))) %>%
  add_object(sphere(z=15,material=light(intensity=70)))
render_scene(scene, parallel = TRUE, width = 800, height = 800, samples = 1000, clamp_value=10)

Now we’ll add the (included) R .obj file into the scene, using the obj_model() function. We will scale it down slightly using the scale_obj argument, and then embed it on the surface of the ball.

scene = generate_ground(material=diffuse(checkercolor="grey20")) %>%
  add_object(sphere(y=0.2,material=glossy(color="#2b6eff",reflectance=0.05))) %>%
  add_object(obj_model(r_obj(),z=1,y=-0.05,scale_obj=0.45,material=diffuse())) %>%
  add_object(sphere(y=10,z=1,radius=4,material=light(intensity=8))) %>%
  add_object(sphere(z=15,material=light(intensity=70)))
render_scene(scene, parallel = TRUE, width = 800, height = 800, samples = 1000, clamp_value=10)

Here we’ll render a grid of different viewpoints.

par(mfrow=c(2,2))
render_scene(scene, parallel = TRUE, width = 400, height = 400, 
             lookfrom = c(7,1,7), samples = 1000, clamp_value=10)
render_scene(scene, parallel = TRUE, width = 400, height = 400, 
             lookfrom = c(0,7,7), samples = 1000, clamp_value=10)
render_scene(scene, parallel = TRUE, width = 400, height = 400, 
             lookfrom = c(-7,0,-7), samples = 1000, clamp_value=10)
render_scene(scene, parallel = TRUE, width = 400, height = 400, 
             lookfrom = c(-7,7,7), samples = 1000, clamp_value=10)

par(mfrow=c(1,1))

Here’s another example: We start by generating an empty Cornell box and rendering it with render_scene(). Setting parallel = TRUE will utilize all available cores on your machine. The lookat, lookfrom, aperture, and fov arguments control the camera, and the samples argument controls how many samples to take at each pixel. Higher sample counts result in a less noisy image.

scene = generate_cornell()
render_scene(scene, lookfrom=c(278,278,-800),lookat = c(278,278,0), aperture=0, fov=40, samples = 1000,
             ambient_light=FALSE, parallel=TRUE, width=800, height=800, clamp_value = 5)

Here we add a metal ellipsoid, a checkered purple cube, a colored glass sphere, a pig, and plaster the walls with the iris dataset using textures applied to rectangles. We first write the textures out to a temporary filename, and then read the image back in using the png::readPNG() function. We then pass this to the image argument in the diffuse material, which applies it as a texture.

tempfileplot = tempfile()
png(filename=tempfileplot,height=1600,width=1600)
plot(iris$Petal.Length,iris$Sepal.Width,col=iris$Species,pch=18,cex=12)
dev.off()
## quartz_off_screen 
##                 2
image_array = png::readPNG(tempfileplot)

generate_cornell() %>%
  add_object(ellipsoid(x=555/2,y=100,z=555/2,a=50,b=100,c=50, material = metal(color="lightblue"))) %>%
  add_object(cube(x=100,y=130/2,z=200,xwidth = 130,ywidth=130,zwidth = 130,
                  material=diffuse(checkercolor="purple", checkerperiod = 30),angle=c(0,10,0))) %>%
  add_object(pig(x=100,y=190,z=200,scale=40,angle=c(0,30,0))) %>%
  add_object(sphere(x=420,y=555/8,z=100,radius=555/8,
                    material = dielectric(color="orange"))) %>%
  add_object(yz_rect(x=0.01,y=300,z=555/2,zwidth=400,ywidth=400,
                     material = diffuse(image_texture = image_array))) %>%
  add_object(yz_rect(x=555/2,y=300,z=555-0.01,zwidth=400,ywidth=400,
                     material = diffuse(image_texture = image_array),angle=c(0,90,0))) %>%
  add_object(yz_rect(x=555-0.01,y=300,z=555/2,zwidth=400,ywidth=400,
                     material = diffuse(image_texture = image_array),angle=c(0,180,0))) %>%
  render_scene(lookfrom=c(278,278,-800),lookat = c(278,278,0), aperture=0, fov=40,  samples = 1000,
             ambient_light=FALSE, parallel=TRUE, width=800, height=800, clamp_value = 5)

Rayrender also has an interface to create objects using constructive solid geometry, with a wide variety of primitives and operations.

generate_ground(material=diffuse(checkercolor="grey20")) %>%
  add_object(csg_object(csg_combine(
    csg_combine(
      csg_box(),
      csg_sphere(radius=0.707),
      operation="intersection"),
    csg_group(list(csg_cylinder(start=c(-1,0,0), end=c(1,0,0), radius=0.4),
                   csg_cylinder(start=c(0,-1,0), end=c(0,1,0), radius=0.4),
                   csg_cylinder(start=c(0,0,-1), end=c(0,0,1), radius=0.4))),
    operation="subtract"),
    material=glossy(color="red"))) %>%
  add_object(csg_object(csg_translate(csg_combine(
    csg_onion(csg_onion(csg_onion(csg_sphere(radius=0.3), 0.2), 0.1),0.05),
    csg_box(y=1,width=c(10,2,10)), operation = "subtract"), x=1.3),
    material=glossy(color="purple"))) %>%
  add_object(csg_object(csg_combine(
     csg_sphere(x=-1.2,z=-0.3, y=0.5,radius = 0.4),
     csg_sphere(x=-1.4,z=0.4, radius = 0.4), operation="blend", radius=0.5),
     material=glossy(color="dodgerblue4"))) %>%
  add_object(sphere(y=5,x=3,radius=1,material=light(intensity=30))) %>%
  render_scene(clamp_value=10, fov=20,lookfrom=c(5,5,10),samples=1000,width=800,height=800)

We can also use the path() element to draw 3D paths. Here, we render the Lorenz attractor:

library(deSolve)
parameters = c(s = 10, r = 28, b = 8/3)
state = c(X = 1, Y = 0, Z = 1)

Lorenz = function(t, state, parameters) {
  with(as.list(c(state, parameters)), {
    dX = s * (Y - X)
    dY = X * (r - Z) - Y
    dZ = X * Y - b * Z
    list(c(dX, dY, dZ))
  })
}

times = seq(0, 50, by = 0.05)
vals = ode(y = state, times = times, func = Lorenz, parms = parameters)[,-1]

#scale and rearrange:
vals = vals[,c(1,3,2)]/20

generate_studio() %>% 
  add_object(path(points=vals,y=-0.6,width=0.01,material=diffuse(color="red"))) %>% 
  add_object(sphere(y=5,z=5,radius=0.5,material=light(intensity=200))) %>% 
  render_scene(samples=256,lookat=c(0,0.5,0),lookfrom=c(0,1,10),width = 800, height = 800, 
               clamp_value=10,parallel=TRUE)

Finally, rayrender supports environment lighting with the environment_light argument. Pass a high dynamic range image (.hdr) or a low-dynamic range image (.jpg,.png) and the image will be used to light the scene (along with any other lights). Here’s an example using an HDR image of Venice at sunset (obtained for free from hdrihaven.com), also using the Oren-Nayar diffuse model with sigma = 90 for a more realistic diffuse surface. We also add an extruded polygon star, using the extruded_polygon object.

tempfilehdr = tempfile(fileext = ".hdr")
download.file("https://www.tylermw.com/data/venice_sunset_2k.hdr",tempfilehdr)

#Create star polygon
angles = seq(0,360,by=36)
xx = rev(c(rep(c(1,0.5),5),1) * sinpi(angles/180))
yy = rev(c(rep(c(1,0.5),5),1) * cospi(angles/180))
star_polygon = data.frame(x=xx,y=yy)
hollow_star = rbind(star_polygon,0.8*star_polygon)

generate_ground(material = diffuse(color="grey20", checkercolor = "grey50",sigma=90)) %>%
  add_object(sphere(material=metal())) %>%
  add_object(obj_model(y=-1,x=-1.8,r_obj(), angle=c(0,135,0),material = diffuse(sigma=90))) %>%
  add_object(pig(x=1.8,y=-1.2,scale=0.5,angle=c(0,90,0),diffuse_sigma = 90)) %>%
  add_object(extruded_polygon(hollow_star,top=-0.5,bottom=-1, z=-2,
                              hole = nrow(star_polygon),
                              material=diffuse(color="red",sigma=90))) %>%
  render_scene(parallel = TRUE, environment_light = tempfilehdr, width=800,height=800,
               fov=70,clamp_value=10,samples=1000, aperture=0.1,
               lookfrom=c(-0.9,1.2,-4.5),lookat=c(0,-1,0))

Acknowledgments

Thanks to Brodie Gaslam (@brodieG) for contributions to the extruded_polygon() function.

More Repositories

1

rayshader

R Package for 2D and 3D mapping and data visualization
R
1,947
star
2

MusaMasterclass

My masterclass hosted by the Penn MUSA department on 3D mapping and visualization in R
123
star
3

skpr

Generates and evaluates D, I, A, Alias, E, T, G, and custom optimal designs. Supports generation and evaluation of mixture and split/split-split/N-split plot designs. Includes parametric and Monte Carlo power evaluation functions. Provides a framework to evaluate power using functions provided in other packages or written by the user.
R
103
star
4

rayvertex

3D Software Rasterizer for R
C++
60
star
5

shadr

GLSL shaders in R
C++
57
star
6

rayimage

Uses convolution-based techniques to generate simulated camera bokeh, depth of field, and other camera effects, using an image and an optional depth map. Includes functions to perform 2D convolutions, add image overlays, generate camera vignette effects, and add titles to images.
C++
46
star
7

raymolecule

Parse and Render 3D Molecular Structures in R
R
38
star
8

coronaobj

R
36
star
9

terrainmeshr

Triangulate and Simplify 3D Terrain Meshes
C++
31
star
10

adjustedcranlogs

Removes daily shared downloads amongst CRAN packages and re-download/CRAN mirror spikes associated with package updates.
R
26
star
11

tree3d

R
20
star
12

rayrollercoaster

Create 3D Rollercoasters in R
R
15
star
13

raybonsai

Generate Procedural 3D Trees in R
R
9
star
14

spacefillr

R Package for Space-Filling Random and Quasi-Random Sequences
C
5
star
15

skpr_dataworks_workshop

Course Materials for the Design of Experiments in R with skpr workshop at DATAWorks 2023
CSS
2
star