• Stars
    star
    299
  • Rank 139,269 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Random dataframe and database table generator

Random database/dataframe generator

Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA

Introduction

Often, beginners in SQL or data science struggle with the matter of easy access to a large sample database file (.DB or .sqlite) for practicing SQL commands. Would it not be great to have a simple tool or library to generate a large database with multiple tables, filled with data of one's own choice?

After all, databases break every now and then and it is safest to practice with a randomly generated one :-)

https://imgs.xkcd.com/comics/exploits_of_a_mom.png

While it is easy to generate random numbers or simple words for Pandas or dataframe operation learning, it is often non-trivial to generate full data tables with meaningful yet random entries of most commonly encountered fields in the world of database, such as

  • name,
  • age,
  • birthday,
  • credit card number,
  • SSN,
  • email id,
  • physical address,
  • company name,
  • job title,

This Python package generates a random database TABLE (or a Pandas dataframe, or an Excel file) based on user's choice of data types (database fields). User can specify the number of samples needed. One can also designate a "PRIMARY KEY" for the database table. Finally, the TABLE is inserted into a new or existing database file of user's choice.

https://raw.githubusercontent.com/tirthajyoti/pydbgen/master/images/Top_image_1.png

Dependency and Acknowledgement

At its core, pydbgen uses Faker as the default random data generating engine for most of the data types. Original function is written for few data types such as realistic email and license plate. Also the default phone number generated by Faker is free-format and does not correspond to US 10 digit format. Therefore, a simple phone number data type is introduced in pydbgen. The original contribution of pydbgen is to take the single data-generating function from Faker and use it cleverly to generate Pandas data series or dataframe or SQLite database tables as per the specification of the user. Here is the link if you want to look up more about Faker package,

Faker Documentation Home

Installation

(On Linux and Windows) You can use pip to install pydbgen:

pip install pydbgen

(On Mac OS), first install pip,

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py

Then proceed as above.

Usage

Current version (1.0.0) of pydbgen comes with the following primary methods,

  • gen_data_series()
  • gen_dataframe()
  • gen_table()
  • gen_excel()

The gen_table() method allows you to build a database with as many tables as you want, filled with random data and fields of your choice. But first, you have to create an object of pydb class:

myDB = pydbgen.pydb()

gen_data_series()

Returns a Pandas series object with the desired number of entries and data type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Phone number can be of two types:

  • phone_number_simple generates 10 digit US number in xxx-xxx-xxxx format
  • phone_number_full may generate an international number with different format

Code example:

se=myDB.gen_data_series(data_type='date')
print(se)

0    1995-08-09
1    2001-08-01
2    1980-06-26
3    2018-02-18
4    1972-10-12
5    1983-11-12
6    1975-09-04
7    1970-11-01
8    1978-03-23
9    1976-06-03
dtype: object

gen_dataframe()

Generates a Pandas dataframe filled with random entries. User can specify the number of rows and data type of the fields/columns.

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.

Code example:

testdf=myDB.gen_dataframe(
25,fields=['name','city','phone',
'license_plate','email'],
real_email=True,phone_simple=True
)

gen_table()

Attempts to create a table in a database (.db) file using Python's built-in SQLite engine. User can specify various data types to be included as database table fields.

All data types (fields) in the SQLite table will be of VARCHAR type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.
  • db_file: Name of the database where the TABLE will be created or updated. Default database name will be chosen if not specified by user.
  • table_name: Name of the table, to be chosen by user. Default table name will be chosen if not specified by user.
  • primarykey: User can choose a PRIMARY KEY from among the various fields. If nothing specified, the first data field will be made PRIMARY KEY. If user chooses a field, which is not in the specified list, an error will be thrown and no table will be generated.

Code example:

myDB.gen_table(
20,fields=['name','city','job_title','phone','company','email'],
db_file='TestDB.db',table_name='People',
primarykey='name',real_city=False
)

gen_excel()

Attempts to create an Excel file using Pandas excel_writer function. User can specify various data types to be included. All data types (fields) in the Excel file will be of text type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.
  • filename: Name of the Excel file to be created or updated. Default file name will be chosen if not specified by user.

Code example:

myDB.gen_excel(15,fields=['name','year','email','license_plate'],
        filename='TestExcel.xlsx',real_email=True)

Other auxiliary methods available

Few other auxiliary functions available in this package.

More Repositories

1

Machine-Learning-with-Python

Practice and tutorial-style notebooks covering wide variety of machine learning techniques
Jupyter Notebook
3,065
star
2

Data-science-best-resources

Carefully curated resource links for data science in one place
2,858
star
3

Papers-Literature-ML-DL-RL-AI

Highly cited and useful papers related to machine learning, deep learning, AI, game theory, reinforcement learning
2,320
star
4

Stats-Maths-with-Python

General statistics, mathematical programming, and numerical/scientific computing scripts and notebooks in Python
Jupyter Notebook
852
star
5

Deep-learning-with-Python

Deep learning codes and projects using Python
Jupyter Notebook
346
star
6

Spark-with-Python

Fundamentals of Spark with Python (using PySpark), code examples
Jupyter Notebook
327
star
7

Web-Database-Analytics

Web scrapping and related analytics using Python tools
Jupyter Notebook
269
star
8

UCI-ML-API

Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)
Python
246
star
9

Design-of-experiment-Python

Design-of-experiment (DOE) generator for science, engineering, and statistics
Jupyter Notebook
244
star
10

Optimization-Python

General optimization (LP, MIP, QP, continuous and discrete optimization etc.) using Python
Jupyter Notebook
222
star
11

DS-with-PySimpleGUI

Data science and Machine Learning GUI programs/ desktop apps with PySimpleGUI package
Jupyter Notebook
167
star
12

Interactive_Machine_Learning

IPython widgets, interactive plots, interactive machine learning
Jupyter Notebook
150
star
13

doepy

Design of Experiment Generator. Read the docs at: https://doepy.readthedocs.io/en/latest/
Python
143
star
14

PyTorch_Machine_Learning

Machine learning, Deep Learning, CNN with PyTorch
Jupyter Notebook
80
star
15

Synthetic-data-gen

Various methods for generating synthetic data for data science and ML
Jupyter Notebook
75
star
16

Finance-with-Python

Financial data analytics with Python
Jupyter Notebook
72
star
17

Covid-19-analysis

Analysis with Covid-19 data
Jupyter Notebook
60
star
18

Julia-data-science

Data science and numerical computing with Julia
Jupyter Notebook
57
star
19

R-stats-machine-learning

Misc Statistics and Machine Learning codes in R
R
40
star
20

Algorithm-Data-Structures-Python

Various useful data structures in Python
Jupyter Notebook
37
star
21

TensorFlow_Basics

Basic TensorFlow mechanics, operations, class definitions, and neural networks building. Examples from deeplearning.ai Tensorflow course using Google Colab platform.
Jupyter Notebook
35
star
22

Scikit-image-processing

Image processing examples with Numpy, Scipy, and Scikit-image
Jupyter Notebook
34
star
23

Digital-Twin

Digital twin with Python
Jupyter Notebook
33
star
24

mlr

Multiple linear regression with statistical inference, residual analysis, direct CSV loading, and other features
Python
31
star
25

Packt-Data_Wrangling

Code repo for Packt course I developed, "Beginning Data Wrangling with Python"
Jupyter Notebook
28
star
26

ML-apps-with-Streamlit

Building simple ML apps with Streamlit
Python
24
star
27

PyScript-examples

Examples of web pages developed with PyScript framework
23
star
28

tirthajyoti.github.io

Tirthajyoti's Home Page about machine learning, statistics, analytics
HTML
22
star
29

Algorithm_Maths_Python

General math scripts and important algorithms' implementation in Python 3
Jupyter Notebook
21
star
30

Symbolic-computation-Python

Symbolic computation using SymPy and various applications
Jupyter Notebook
20
star
31

RL_basics

Basic Reinforcement Learning algorithms
Jupyter Notebook
17
star
32

GradDescent

MATLAB implementation of Gradient Descent algorithm for Multivariate Linear Regression
MATLAB
16
star
33

Convolutional-Networks

Various conv nets using TensorFlow, Keras, or other tools
Jupyter Notebook
14
star
34

Dask-analytics-ML

Data science and ML with Dask
Jupyter Notebook
13
star
35

Magnimind-Stats-Bootcamp-Jan-2020

Magnimind Bootcamp Stats for Data Science
Jupyter Notebook
12
star
36

PyWebIO

Web apps generated by pure Python script using PyWebIO
Python
11
star
37

Scikit-image-book

Scikit-image-book-built-with-Jupyter-book
Jupyter Notebook
11
star
38

Stats_data_science_ValleyML

Notebooks for the ValleyML Bootcamp (Aug 2019) "Statistical methods for data science"
Jupyter Notebook
10
star
39

Randomized_Optimization

Randomized optimization techniques for NN and other problems
HTML
8
star
40

HyperparameterLearningTF

Learning the impact of Hyperparameters in a deep learning model
Jupyter Notebook
7
star
41

D3.js-examples

Simple D3.js code examples
JavaScript
6
star
42

MNIST_digit_recognition

MNIST hand-written digit recognition by fully-connected and convolutional neural networks - boiler plate code for easy reproduction and tutorial purpose.
Jupyter Notebook
6
star
43

tirthajyoti

5
star
44

DeepNetworksR

Multi-layer neural networks code examples in R
R
5
star
45

Random_Function_Generator

Random function generator, with generation by symbolic input
Jupyter Notebook
4
star
46

Stanford-SCI-52

Jupyter Notebook
4
star
47

Gradio-apps

Python web apps built with Gradio
3
star
48

mldsutils

My own ml and ds utils package
Jupyter Notebook
3
star
49

ghPage-test

test for gh pages
2
star
50

FunnyWordGen

Funny word (random) generator using Python 3
Python
2
star
51

Saturn-cloud

Write-ups for Saturn-cloud
1
star