• Stars
    star
    516
  • Rank 85,726 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 7 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python interface to CoreNLP using a bidirectional server-client interface.

Stanford CoreNLP Python Interface

NOTE: This package is now deprecated. Please use the stanza package instead.

https://travis-ci.org/stanfordnlp/python-stanford-corenlp.svg?branch=master

This package contains a python interface for Stanford CoreNLP that contains a reference implementation to interface with the Stanford CoreNLP server. The package also contains a base class to expose a python-based annotation provider (e.g. your favorite neural NER system) to the CoreNLP pipeline via a lightweight service.

To use the package, first download the official java CoreNLP release, unzip it, and define an environment variable $CORENLP_HOME that points to the unzipped directory.

You can also install this package from PyPI using pip install stanford-corenlp


Command Line Usage

Probably the easiest way to use this package is through the annotate command-line utility:

usage: annotate [-h] [-i INPUT] [-o OUTPUT] [-f {json}]
                [-a ANNOTATORS [ANNOTATORS ...]] [-s] [-v] [-m MEMORY]
                [-p PROPS [PROPS ...]]

Annotate data

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Input file to process; each line contains one document
                        (default: stdin)
  -o OUTPUT, --output OUTPUT
                        File to write annotations to (default: stdout)
  -f {json}, --format {json}
                        Output format
  -a ANNOTATORS [ANNOTATORS ...], --annotators ANNOTATORS [ANNOTATORS ...]
                        A list of annotators
  -s, --sentence-mode   Assume each line of input is a sentence.
  -v, --verbose-server  Server is made verbose
  -m MEMORY, --memory MEMORY
                        Memory to use for the server
  -p PROPS [PROPS ...], --props PROPS [PROPS ...]
                        Properties as a list of key=value pairs

We recommend using annotate in conjuction with the wonderful jq command to process the output. As an example, given a file with a sentence on each line, the following command produces an equivalent space-separated tokens:

cat file.txt | annotate -s -a tokenize | jq '[.tokens[].originalText]' > tokenized.txt

Annotation Server Usage

import corenlp

text = "Chris wrote a simple sentence that he parsed with Stanford CoreNLP."

# We assume that you've downloaded Stanford CoreNLP and defined an environment
# variable $CORENLP_HOME that points to the unzipped directory.
# The code below will launch StanfordCoreNLPServer in the background
# and communicate with the server to annotate the sentence.
with corenlp.CoreNLPClient(annotators="tokenize ssplit pos lemma ner depparse".split()) as client:
  ann = client.annotate(text)

# You can access annotations using ann.
sentence = ann.sentence[0]

# The corenlp.to_text function is a helper function that
# reconstructs a sentence from tokens.
assert corenlp.to_text(sentence) == text

# You can access any property within a sentence.
print(sentence.text)

# Likewise for tokens
token = sentence.token[0]
print(token.lemma)

# Use tokensregex patterns to find who wrote a sentence.
pattern = '([ner: PERSON]+) /wrote/ /an?/ []{0,3} /sentence|article/'
matches = client.tokensregex(text, pattern)
# sentences contains a list with matches for each sentence.
assert len(matches["sentences"]) == 1
# length tells you whether or not there are any matches in this
assert matches["sentences"][0]["length"] == 1
# You can access matches like most regex groups.
matches["sentences"][1]["0"]["text"] == "Chris wrote a simple sentence"
matches["sentences"][1]["0"]["1"]["text"] == "Chris"

# Use semgrex patterns to directly find who wrote what.
pattern = '{word:wrote} >nsubj {}=subject >dobj {}=object'
matches = client.semgrex(text, pattern)
# sentences contains a list with matches for each sentence.
assert len(matches["sentences"]) == 1
# length tells you whether or not there are any matches in this
assert matches["sentences"][0]["length"] == 1
# You can access matches like most regex groups.
matches["sentences"][1]["0"]["text"] == "wrote"
matches["sentences"][1]["0"]["$subject"]["text"] == "Chris"
matches["sentences"][1]["0"]["$object"]["text"] == "sentence"

See test_client.py and test_protobuf.py for more examples. Props to @dan-zheng for tokensregex/semgrex support.

Annotation Service Usage

NOTE: The annotation service allows users to provide a custom annotator to be used by the CoreNLP pipeline. Unfortunately, it relies on experimental code internal to the Stanford CoreNLP project is not yet available for public use.

import corenlp
from .happyfuntokenizer import Tokenizer

class HappyFunTokenizer(Tokenizer, corenlp.Annotator):
    def __init__(self, preserve_case=False):
        Tokenizer.__init__(self, preserve_case)
        corenlp.Annotator.__init__(self)

    @property
    def name(self):
        """
        Name of the annotator (used by CoreNLP)
        """
        return "happyfun"

    @property
    def requires(self):
        """
        Requires has to specify all the annotations required before we
        are called.
        """
        return []

    @property
    def provides(self):
        """
        The set of annotations guaranteed to be provided when we are done.
        NOTE: that these annotations are either fully qualified Java
        class names or refer to nested classes of
        edu.stanford.nlp.ling.CoreAnnotations (as is the case below).
        """
        return ["TextAnnotation",
                "TokensAnnotation",
                "TokenBeginAnnotation",
                "TokenEndAnnotation",
                "CharacterOffsetBeginAnnotation",
                "CharacterOffsetEndAnnotation",
               ]

    def annotate(self, ann):
        """
        @ann: is a protobuf annotation object.
        Actually populate @ann with tokens.
        """
        buf, beg_idx, end_idx = ann.text.lower(), 0, 0
        for i, word in enumerate(self.tokenize(ann.text)):
            token = ann.sentencelessToken.add()
            # These are the bare minimum required for the TokenAnnotation
            token.word = word
            token.tokenBeginIndex = i
            token.tokenEndIndex = i+1

            # Seek into the txt until you can find this word.
            try:
                # Try to update beginning index
                beg_idx = buf.index(word, beg_idx)
            except ValueError:
                # Give up -- this will be something random
                end_idx = beg_idx + len(word)

            token.beginChar = beg_idx
            token.endChar = end_idx

            beg_idx, end_idx = end_idx, end_idx

annotator = HappyFunTokenizer()
# Calling .start() will launch the annotator as a service running on
# port 8432 by default.
annotator.start()

# annotator.properties contains all the right properties for
# Stanford CoreNLP to use this annotator.
with corenlp.CoreNLPClient(properties=annotator.properties, annotators="happyfun ssplit pos".split()) as client:
    ann = client.annotate("RT @ #happyfuncoding: this is a typical Twitter tweet :-)")

    tokens = [t.word for t in ann.sentence[0].token]
    print(tokens)

See test_annotator.py for more examples.

More Repositories

1

dspy

DSPy: The framework for programming—not prompting—foundation models
Python
18,220
star
2

CoreNLP

CoreNLP: A Java suite of core NLP tools for tokenization, sentence segmentation, NER, parsing, coreference, sentiment analysis, etc.
Java
9,678
star
3

stanza

Stanford NLP Python library for tokenization, sentence segmentation, NER, and parsing of many human languages
Python
7,278
star
4

GloVe

Software in C and data files for the popular GloVe model for distributed word representations, a.k.a. word vectors or embeddings
C
6,867
star
5

cs224n-winter17-notes

Course notes for CS224N Winter17
TeX
1,587
star
6

pyreft

ReFT: Representation Finetuning for Language Models
Python
1,137
star
7

treelstm

Tree-structured Long Short-Term Memory networks (http://arxiv.org/abs/1503.00075)
Lua
875
star
8

pyvene

Stanford NLP Python Library for Understanding and Improving PyTorch Models via Interventions
Python
625
star
9

string2string

String-to-String Algorithms for Natural Language Processing
Jupyter Notebook
533
star
10

mac-network

Implementation for the paper "Compositional Attention Networks for Machine Reasoning" (Hudson and Manning, ICLR 2018)
Python
494
star
11

phrasal

A large-scale statistical machine translation system written in Java.
Java
208
star
12

spinn

SPINN (Stack-augmented Parser-Interpreter Neural Network): fast, batchable, context-aware TreeRNNs
Python
205
star
13

coqa-baselines

The baselines used in the CoQA paper
Python
176
star
14

cocoa

Framework for learning dialogue agents in a two-player game setting.
Python
158
star
15

stanza-old

Stanford NLP group's shared Python tools.
Python
138
star
16

chirpycardinal

Stanford's Alexa Prize socialbot
Python
131
star
17

stanfordnlp

[Deprecated] This library has been renamed to "Stanza". Latest development at: https://github.com/stanfordnlp/stanza
Python
114
star
18

wge

Workflow-Guided Exploration: sample-efficient RL agent for web tasks
Python
109
star
19

pdf-struct

Logical structure analysis for visually structured documents
Python
81
star
20

edu-convokit

Edu-ConvoKit: An Open-Source Framework for Education Conversation Data
Jupyter Notebook
75
star
21

cs224n-web

http://cs224n.stanford.edu
HTML
60
star
22

ColBERT-QA

Code for Relevance-guided Supervision for OpenQA with ColBERT (TACL'21)
40
star
23

stanza-train

Model training tutorials for the Stanza Python NLP Library
Python
37
star
24

phrasenode

Mapping natural language commands to web elements
Python
37
star
25

contract-nli-bert

A baseline system for ContractNLI (https://stanfordnlp.github.io/contract-nli/)
Python
29
star
26

color-describer

Code for Learning to Generate Compositional Color Descriptions
OpenEdge ABL
26
star
27

stanza-resources

23
star
28

python-corenlp-protobuf

Python bindings for Stanford CoreNLP's protobufs.
Python
20
star
29

miniwob-plusplus-demos

Demos for the MiniWoB++ benchmark
17
star
30

multi-distribution-retrieval

Code for our paper Resources and Evaluations for Multi-Distribution Dense Information Retrieval
Python
14
star
31

huggingface-models

Scripts for pushing models to huggingface repos
Python
11
star
32

nlp-meetup-demo

Java
8
star
33

sentiment-treebank

Updated version of SST
Python
8
star
34

en-worldwide-newswire

An English NER dataset built from foreign newswire
Python
7
star
35

plot-data

datasets for plotting
Jupyter Notebook
6
star
36

contract-nli

ContractNLI: A Dataset for Document-level Natural Language Inference for Contracts
HTML
4
star
37

plot-interface

Web interface for the plotting project
JavaScript
3
star
38

handparsed-treebank

Extra hand parsed data for training models
Perl
2
star
39

coqa

CoQA -- A Conversational Question Answering Challenge
Shell
2
star
40

pdf-struct-models

A repository for hosting models for https://github.com/stanfordnlp/pdf-struct
HTML
2
star
41

chirpy-parlai-blenderbot-fork

A fork of ParlAI supporting Chirpy Cardinal's custom neural generator
Python
2
star
42

wob-data

Data for QAWoB and FlightWoB web interaction benchmarks from the World of Bits paper (Shi et al., 2017).
Python
2
star
43

pdf-struct-dataset

Dataset for pdf-struct (https://github.com/stanfordnlp/pdf-struct)
HTML
1
star
44

nn-depparser

A re-implementation of nndep using PyTorch.
Python
1
star