• Stars
    star
    1
  • Language
    R
  • License
    Other
  • Created over 1 year ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Service repo for common infrastructure across all open source lectures

More Repositories

1

seminar_multimodal_dl

https://slds-lmu.github.io/seminar_multimodal_dl/
TeX
162
star
2

lecture_i2ml

I2ML lecture repository
HTML
147
star
3

iml_methods_limitations

Seminar on Limitations of Interpretable Machine Learning Methods
R
55
star
4

yahpo_gym

Surrogate benchmarks for HPO problems
Jupyter Notebook
26
star
5

imlplots

Create Interpretable Machine Learning plots with an interactive Shiny based dashboard
R
15
star
6

lecture_dl4nlp

Repo containing all the lecture material for the dl4nlp course
TeX
15
star
7

paper_2019_iml_measures

Quantifying Interpretability of Arbitrary Machine Learning Models Through Functional Decomposition
TeX
15
star
8

lecture_iml

Jupyter Notebook
12
star
9

code_pitfalls_iml

This repository contains the code for all figures in the paper "General Pitfalls of Model-agnostic Interpretation Methods for Machine Learning Models"
R
12
star
10

i2ml

https://slds-lmu.github.io/i2ml/
Makefile
12
star
11

seminar_nlp_ss20

Link to website
TeX
11
star
12

lecture_optimization

TeX
11
star
13

tsclassification

Wrapping the Time-Series Classification Java Implementations for R
R
9
star
14

mosmafs

Multi-Objective Simultaneous Model and Feature Selection
R
8
star
15

latex-math

TeX
7
star
16

qdo_yahpo

A Collection of Quality Diversity Optimization Problems Derived from Hyperparameter Optimization of Machine Learning Models
Python
6
star
17

lecture_i2ml_learnr_tutorials

CSS
5
star
18

lrz_configs

R
5
star
19

yahpo_data

Data required for slds-lmu/yahpo_gym
R
4
star
20

paper_2021_categorical_feature_encodings

R
4
star
21

hpo_ela

R
4
star
22

paper_2023_survival_benchmark

Benchmark for Burk et al. (2024)
R
4
star
23

iml-shiny-summary

Shiny Dashboard showing an interpretation summary for any model
R
3
star
24

i2dl

https://slds-lmu.github.io/i2dl/
HTML
3
star
25

wildlife-ml

Python
3
star
26

paper_2021_xautoml

Jupyter Notebook
3
star
27

lecture_sl

TeX
2
star
28

vistool

R
2
star
29

wildlife-experiments

Jupyter Notebook
2
star
30

seminar_website_skeleton

TeX
2
star
31

jTSC4R

Java Time Series Classification code to use in R
Java
2
star
32

paper_2021_multi_fidelity_surrogates

Surrogate benchmarks for HPO problems
R
2
star
33

surrogates

R
2
star
34

grouped_feat_imp_and_effects

R
2
star
35

dl4nlp

https://slds-lmu.github.io/dl4nlp/
Makefile
2
star
36

rcourses_notebook_deeplearning

scetch
Jupyter Notebook
2
star
37

paper_2019_multiobjective_rfms

High Dimensional Restrictive Federated Model Selection with multi-objective Bayesian Optimization over shifted distributions
Jupyter Notebook
2
star
38

lecture_advml

TeX
1
star
39

yahpo_exps

Experiments for yahpo gym
R
1
star
40

lecture_template

TeX
1
star
41

rcourses_notebook_clustering

Jupyter Notebook
1
star
42

paper_2019_variationalResampleDistributionShift

Variational Resampling Based Assessment of Deep Neural Networks Robustness under Distribution Shift
Python
1
star
43

mlw-htr

Jupyter Notebook
1
star
44

ame

average marginal effects for machine learning
R
1
star
45

qdo_nas

R
1
star
46

paper_2024_rpid

R
1
star
47

benchmark_2022_counterfactuals

Benchmark code for paper on counterfactuals R Package
R
1
star
48

phd_thesis_dummy_template

TeX
1
star
49

rcourses_notebook_ml

Jupyter Notebook
1
star
50

mbt_comparison

R
1
star
51

mobafeas

Model Based Feature Selection
R
1
star
52

introduction_iml_bliz_summerschool

This repository provides a short introduction into the most popular model-agnostic IML (interpretable machine learning) methods. A presentation containing the theoretical background and examples as well as excercises on real-world data are included.
HTML
1
star
53

lecture_i2dl

Introduction to Deep Leaning
Jupyter Notebook
1
star
54

paper_2023_eagga

Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models
R
1
star
55

paper_2023_regression_suite

R
1
star