• Stars
    star
    690
  • Rank 65,522 (Top 2 %)
  • Language
    Python
  • Created about 6 years ago
  • Updated about 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Temporal Pattern Attention for Multivariate Time Series Forecasting

TPA-LSTM

Original Implementation of ''Temporal Pattern Attention for Multivariate Time Series Forecasting''.

Dependencies

  • python3.6.6

You can check and install other dependencies in requirements.txt.

$ pip install -r requirements.txt
# to install TensorFlow, you can refer to https://www.tensorflow.org/install/

Usage

The following example usage shows how to train and test a TPA-LSTM model on MuseData with settings used in this work.

Training

$ python main.py --mode train \
    --attention_len 16 \
    --batch_size 32 \
    --data_set muse \
    --dropout 0.2 \
    --learning_rate 1e-5 \
    --model_dir ./models/model \
    --num_epochs 40 \
    --num_layers 3 \
    --num_units 338

Testing

$ python main.py --mode test \
    --attention_len 16 \
    --batch_size 32 \
    --data_set muse \
    --dropout 0.2 \
    --learning_rate 1e-5 \
    --model_dir ./models/model \
    --num_epochs 40 \
    --num_layers 3 \
    --num_units 338