• Stars
    star
    539
  • Rank 82,402 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This Repository is implementation of majority of Semantic Segmentation Loss Functions

Semantic-Segmentation-Loss-Functions (SemSegLoss)

This Repository contains implementation of majority of Semantic Segmentation Loss Functions in Keras. Our paper is available open-source on following sites:

In this paper we have summarized 15 such segmentation based loss functions that has been proven to provide state of the art results in different domain datasets.

Recently new los functions have also been added and we are still in process of adding more loss functions, so far we this repo consists of:

  1. Binary Cross Entropy
  2. Weighted Cross Entropy
  3. Balanced Cross Entropy
  4. Dice Loss
  5. Focal loss
  6. Tversky loss
  7. Focal Tversky loss
  8. log-cosh dice loss (ours)
  9. Jaccard/IoU loss
  10. SSIM loss
  11. Unet3+ loss
  12. BASNet loss

This paper is extension of our work on traumatic brain lesion segmentation published at SPIE Medical Imaging'20.

Github Code: https://github.com/shruti-jadon/Traumatic-Brain-Lesions-Segmentation

Citation

If you find our code useful, please consider citing our work using the bibtex:

@inproceedings{jadon2020survey,
  title={A survey of loss functions for semantic segmentation},
  author={Jadon, Shruti},
  booktitle={2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)},
  pages={1--7},
  year={2020},
  organization={IEEE}
}
@article{JADON2021100078,
title = {SemSegLoss: A python package of loss functions for semantic segmentation},
journal = {Software Impacts},
volume = {9},
pages = {100078},
year = {2021},
issn = {2665-9638},
doi = {https://doi.org/10.1016/j.simpa.2021.100078},
url = {https://www.sciencedirect.com/science/article/pii/S2665963821000269},
author = {Shruti Jadon},
keywords = {Deep Learning, Image segmentation, Medical imaging, Loss functions},
abstract = {Image Segmentation has been an active field of research as it has a wide range of applications, ranging from automated disease detection to self-driving cars. In recent years, various research papers proposed different loss functions used in case of biased data, sparse segmentation, and unbalanced dataset. In this paper, we introduce SemSegLoss, a python package consisting of some of the well-known loss functions widely used for image segmentation. It is developed with the intent to help researchers in the development of novel loss functions and perform an extensive set of experiments on model architectures for various applications. The ease-of-use and flexibility of the presented package have allowed reducing the development time and increased evaluation strategies of machine learning models for semantic segmentation. Furthermore, different applications that use image segmentation can use SemSegLoss because of the generality of its functions. This wide range of applications will lead to the development and growth of AI across all industries.}
}

Summarized Loss functions and their use-cases

# Loss Function Use cases
1 Binary Cross-Entropy Works best in equal data distribution among classes scenarios
Bernoulli distribution based loss function
2 Loss Function Widely used with skewed dataset
Weighs positive examples by Beta coefficient
3 Binary Cross-Entropy Similar to weighted-cross entropy, used widely with skewed dataset
weighs both positive as well as negative examples by Beta and 1 - Beta respectively
4 Weighted Cross-Entropy Works best with highly-imbalanced dataset down-weight the contribution of
easy examples, enabling model to learn hard examples
5 Balanced Cross-Entropy Variant of Cross-Entropy
Used for hard-to-segment boundaries
6 Focal Loss Inspired from Dice Coefficient, a metric to evaluate segmentation results.
As Dice Coefficient is non-convex in nature, it has been modified to make it more tractable.
7 Distance map derived loss penalty term Inspired from Sensitivity and Specificity metrics
Used for cases where there is more focus on True Positives.
8 Dice Loss Variant of Dice Coefficient
Add weight to False positives and False negatives.
9 Sensitivity-Specificity Loss Variant of Tversky loss with focus on hard examples
10 Tversky Loss Variant of Dice Loss and inspired regression log-cosh approach for smoothing
Variations can be used for skewed dataset
11 Focal Tversky Loss Inspired by Hausdorff Distance metric used for evaluation of segmentation
Loss tackle the non-convex nature of Distance metric by adding some variations
12 Log-Cosh Dice Loss(ours) Variant of Dice Loss and inspired regression log-cosh approach for smoothing
Variations can be used for skewed dataset
13 Hausdorff Distance loss Inspired by Hausdorff Distance metric used for evaluation of segmentation
Loss tackle the non-convex nature of Distance metric by adding some variations
14 Shape aware loss Variation of cross-entropy loss by adding a shape based coefficient
used in cases of hard-to-segment boundaries.
15 Combo Loss Combination of Dice Loss and Binary Cross-Entropy
used for lightly class imbalanced by leveraging benefits of BCE and Dice Loss
16 Exponential Logarithmic Loss Combined function of Dice Loss and Binary Cross-Entropy
Focuses on less accurately predicted cases
18 Correlation Maximized Structural Similarity Loss Focuses on Segmentation Structure.
Used in cases of structural importance such as medical images.
19 Jaccard/IoU loss Works well on balanced data
Emphasizes more on large foreground regions
20 SSIM loss Captures the structural information in an image.
Focuses on only boundaries of an object