RQ Scheduler
RQ Scheduler is a small package that adds job scheduling capabilities to RQ, a Redis based Python queuing library.
Support RQ Scheduler
If you find rq-scheduler
useful, please consider supporting its development via Tidelift.
Requirements
Installation
You can install RQ Scheduler via pip:
pip install rq-scheduler
Or you can download the latest stable package from PyPI.
Usage
Schedule a job involves doing two different things:
- Putting a job in the scheduler
- Running a scheduler that will move scheduled jobs into queues when the time comes
Scheduling a Job
There are two ways you can schedule a job. The first is using RQ Scheduler's enqueue_at
from redis import Redis
from rq import Queue
from rq_scheduler import Scheduler
from datetime import datetime
scheduler = Scheduler(connection=Redis()) # Get a scheduler for the "default" queue
scheduler = Scheduler('foo', connection=Redis()) # Get a scheduler for the "foo" queue
# You can also instantiate a Scheduler using an RQ Queue
queue = Queue('bar', connection=Redis())
scheduler = Scheduler(queue=queue, connection=queue.connection)
# Puts a job into the scheduler. The API is similar to RQ except that it
# takes a datetime object as first argument. So for example to schedule a
# job to run on Jan 1st 2020 we do:
scheduler.enqueue_at(datetime(2020, 1, 1), func) # Date time should be in UTC
# Here's another example scheduling a job to run at a specific date and time (in UTC),
# complete with args and kwargs.
scheduler.enqueue_at(datetime(2020, 1, 1, 3, 4), func, foo, bar=baz)
# You can choose the queue type where jobs will be enqueued by passing the name of the type to the scheduler
# used to enqueue
scheduler = Scheduler('foo', queue_class="rq.Queue")
scheduler.enqueue_at(datetime(2020, 1, 1), func) # The job will be enqueued at the queue named "foo" using the queue type "rq.Queue"
The second way is using enqueue_in
. Instead of taking a datetime
object,
this method expects a timedelta
and schedules the job to run at
X seconds/minutes/hours/days/weeks later. For example, if we want to monitor how
popular a tweet is a few times during the course of the day, we could do something like
from datetime import timedelta
# Schedule a job to run 10 minutes, 1 hour and 1 day later
scheduler.enqueue_in(timedelta(minutes=10), count_retweets, tweet_id)
scheduler.enqueue_in(timedelta(hours=1), count_retweets, tweet_id)
scheduler.enqueue_in(timedelta(days=1), count_retweets, tweet_id)
IMPORTANT: You should always use UTC datetime when working with RQ Scheduler.
Periodic & Repeated Jobs
As of version 0.3, RQ Scheduler also supports creating periodic and repeated jobs.
You can do this via the schedule
method. Note that this feature needs
RQ >= 0.3.1.
This is how you do it
scheduler.schedule(
scheduled_time=datetime.utcnow(), # Time for first execution, in UTC timezone
func=func, # Function to be queued
args=[arg1, arg2], # Arguments passed into function when executed
kwargs={'foo': 'bar'}, # Keyword arguments passed into function when executed
interval=60, # Time before the function is called again, in seconds
repeat=10, # Repeat this number of times (None means repeat forever)
meta={'foo': 'bar'} # Arbitrary pickleable data on the job itself
)
IMPORTANT NOTE: If you set up a repeated job, you must make sure that you either do not set a result_ttl value or you set a value larger than the interval. Otherwise, the entry with the job details will expire and the job will not get re-scheduled.
Cron Jobs
As of version 0.6.0, RQ Scheduler also supports creating Cron Jobs, which you can use for
repeated jobs to run periodically at fixed times, dates or intervals, for more info check
https://en.wikipedia.org/wiki/Cron. You can do this via the cron
method.
This is how you do it
scheduler.cron(
cron_string, # A cron string (e.g. "0 0 * * 0")
func=func, # Function to be queued
args=[arg1, arg2], # Arguments passed into function when executed
kwargs={'foo': 'bar'}, # Keyword arguments passed into function when executed
repeat=10, # Repeat this number of times (None means repeat forever)
result_ttl=300 # Specify how long (in seconds) successful jobs and their results are kept. Defaults to -1 (forever)
ttl=200 # Specifies the maximum queued time (in seconds) before it's discarded. Defaults to None (infinite TTL).
queue_name=queue_name, # In which queue the job should be put in
meta={'foo': 'bar'}, # Arbitrary pickleable data on the job itself
use_local_timezone=False # Interpret hours in the local timezone
)
Retrieving scheduled jobs
Sometimes you need to know which jobs have already been scheduled. You can get a
list of enqueued jobs with the get_jobs
method
list_of_job_instances = scheduler.get_jobs()
In it's simplest form (as seen in the above example) this method returns a list of all job instances that are currently scheduled for execution.
Additionally the method takes two optional keyword arguments until
and
with_times
. The first one specifies up to which point in time scheduled jobs
should be returned. It can be given as either a datetime / timedelta instance
or an integer denoting the number of seconds since epoch (1970-01-01 00:00:00).
The second argument is a boolean that determines whether the scheduled execution
time should be returned along with the job instances.
Example
# get all jobs until 2012-11-30 10:00:00
list_of_job_instances = scheduler.get_jobs(until=datetime(2012, 10, 30, 10))
# get all jobs for the next hour
list_of_job_instances = scheduler.get_jobs(until=timedelta(hours=1))
# get all jobs with execution times
jobs_and_times = scheduler.get_jobs(with_times=True)
# returns a list of tuples:
# [(<rq.job.Job object at 0x123456789>, datetime.datetime(2012, 11, 25, 12, 30)), ...]
Checking if a job is scheduled
You can check whether a specific job instance or job id is scheduled for
execution using the familiar python in
operator
if job_instance in scheduler:
# Do something
# or
if job_id in scheduler:
# Do something
Canceling a job
To cancel a job, simply pass a Job
or a job id to scheduler.cancel
scheduler.cancel(job)
Note that this method returns None
whether the specified job was found or not.
Running the scheduler
RQ Scheduler comes with a script rqscheduler
that runs a scheduler
process that polls Redis once every minute and move scheduled jobs to the
relevant queues when they need to be executed
# This runs a scheduler process using the default Redis connection
rqscheduler
If you want to use a different Redis server you could also do
rqscheduler --host localhost --port 6379 --db 0
The script accepts these arguments:
-H
or--host
: Redis server to connect to-p
or--port
: port to connect to-d
or--db
: Redis db to use-P
or--password
: password to connect to Redis-b
or--burst
: runs in burst mode (enqueue scheduled jobs whose execution time is in the past and quit)-i INTERVAL
or--interval INTERVAL
: How often the scheduler checks for new jobs to add to the queue (in seconds, can be floating-point for more precision).-j
or--job-class
: specify custom job class for rq to use (python module.Class)-q
or--queue-class
: specify custom queue class for rq to use (python module.Class)
The arguments pull default values from environment variables with the
same names but with a prefix of RQ_REDIS_
.
Running the Scheduler as a Service on Ubuntu
sudo /etc/systemd/system/rqscheduler.service
[Unit]
Description=RQScheduler
After=network.target
[Service]
ExecStart=/home/<<User>>/.virtualenvs/<<YourVirtualEnv>>/bin/python \
/home/<<User>>/.virtualenvs/<<YourVirtualEnv>>/lib/<<YourPythonVersion>>/site-packages/rq_scheduler/scripts/rqscheduler.py
[Install]
WantedBy=multi-user.target
You will also want to add any command line parameters if your configuration is not localhost or not set in the environment variables.
Start, check Status and Enable the service
sudo systemctl start rqscheduler.service
sudo systemctl status rqscheduler.service
sudo systemctl enable rqscheduler.service
Running Multiple Schedulers
Multiple instances of the rq-scheduler can be run simultaneously. It allows for
- Reliability (no single point of failure)
- Failover (scheduler instances automatically retry to attain lock and schedule jobs)
- Running scheduler on multiple server instances to make deployment identical and easier
Multiple schedulers can be run in any way you want. Typically you'll only want to run one scheduler per server/instance.
rqscheduler -i 5
# another shell/systemd service or ideally another server
rqscheduler -i 5
# different parameters can be provided to different schedulers
rqscheduler -i 10
Practical example:
scheduler_a
is running onec2_instance_a
- If
scheduler_a
crashes orec2_instance_a
goes down, then our tasks won't be scheduled at all - Instead we can simply run 2 schedulers. Another scheduler called
scheduler_b
can be run onec2_instance_b
- Now both
scheduler_a
andscheduler_b
will periodically check and schedule the jobs - If one fails, the other still works
You can read more about multiple schedulers in #212 and #195