• This repository has been archived on 31/Aug/2019
  • Stars
    star
    306
  • Rank 136,456 (Top 3 %)
  • Language
    Erlang
  • Created over 13 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Erlando

Erlando

Introduction

Erlando is a set of syntax extensions for Erlang. Currently it consists of three syntax extensions, all of which take the form of parse-transformers.

  • Cut: This adds support for cuts to Erlang. These are inspired by the Scheme form of cuts. Cuts can be thought of as a light-weight form of abstraction, with similarities to partial application (or currying).

  • Do: This adds support for do-syntax and monads to Erlang. These are heavily inspired by Haskell, and the monads and libraries are near-mechanical translations from the Haskell GHC libraries.

  • Import As: This adds support for importing remote functions to the current module namespace with explicit control of the local function names.

Use

To use any of these parse-transformers, you must add the necessary -compile attributes to your Erlang source files. For example:

-module(test).
-compile({parse_transform, cut}).
-compile({parse_transform, do}).
-compile({parse_transform, import_as}).
...

Then, when compiling test.erl, you must ensure erlc can locate cut.beam or do.beam or import_as.beam by passing the suitable path to erlc with a -pa or -pz argument. For example:

erlc -Wall +debug_info -I ./include -pa ebin -o ebin  src/cut.erl
erlc -Wall +debug_info -I ./include -pa ebin -o ebin  src/do.erl
erlc -Wall +debug_info -I ./include -pa ebin -o ebin  src/import_as.erl
erlc -Wall +debug_info -I ./include -pa test/ebin -pa ./ebin -o test/ebin test/src/test.erl

Note: If you're using QLC, you may find you need to be careful as to the placement of the parse-transformer attributes. For example, I've found that -compile({parse_transform, cut}). must occur before -include_lib("stdlib/include/qlc.hrl").

Cut

Motivation

The cut parse-transformer is motivated by the frequency with which simple function abstractions are used in Erlang, and the relatively noisy nature of declaring funs. For example, it's quite common to see code like:

with_resource(Resource, Fun) ->
    case lookup_resource(Resource) of
        {ok, R}          -> Fun(R);
        {error, _} = Err -> Err
    end.

my_fun(A, B, C) ->
    with_resource(A, fun (Resource) ->
                         my_resource_modification(Resource, B, C)
                     end).

That is, a fun is created in order to perform variable capture from the surrounding scope but to leave holes for further arguments to be provided. Using a cut, the function my_fun can be rewritten as:

my_fun(A, B, C) ->
    with_resource(A, my_resource_modification(_, B, C)).

Definition

Normally, the variable _ can only occur in patterns: that is, where a match occurs. This can be in assignment, in cases, and in function heads. For example:

{_, bar} = {foo, bar}.

Cut uses _ in expressions to indicate where abstraction should occur. Abstraction from cuts is always performed on the shallowest enclosing expression. For example:

list_to_binary([1, 2, math:pow(2, _)]).

will create the expression

list_to_binary([1, 2, fun (X) -> math:pow(2, X) end]).

and not

fun (X) -> list_to_binary([1, 2, math:pow(2, X)]) end.

It is fine to use multiple cuts in the same expression, and the arguments to the created abstraction will match the order in which the _ var is found in the expression. For example:

assert_sum_3(X, Y, Z, Sum) when X + Y + Z == Sum -> ok;
assert_sum_3(_X, _Y, _Z, _Sum) -> {error, not_sum}.

test() ->
    Equals12 = assert_sum_3(_, _, _, 12),
    ok = Equals12(9, 2, 1).

It is perfectly legal to take cuts of cuts as the abstraction created by the cut is a normal fun expression and thus can be re-cut as necessary:

test() ->
    Equals12 = assert_sum_3(_, _, _, 12),
    Equals5 = Equals12(_, _, 7),
    ok = Equals5(2, 3).

Note that because a simple fun is being constructed by the cut, the arguments are evaluated prior to the cut function. For example:

f1(_, _) -> io:format("in f1~n").

test() ->
    F = f1(io:format("test line 1~n"), _),
    F(io:format("test line 2~n")).

will print out

test line 2
test line 1
in f1

This is because the cut creates fun (X) -> f1(io:format("test line 1~n"), X) end. Thus it is clear that X must be evaluated first, before the fun can be invoked.

Of course, no one would be crazy enough to have side-effects in function argument expressions, so this will never cause any issues!

Cuts are not limited to function calls. They can be used in any expression where they make sense:

Tuples

F = {_, 3},
{a, 3} = F(a).

Lists

dbl_cons(List) -> [_, _ | List].

test() ->
    F = dbl_cons([33]),
    [7, 8, 33] = F(7, 8).

Note that if you nest a list as a list tail in Erlang, it's still treated as one expression. For example:

A = [a, b | [c, d | [e]]]

is exactly the same (right from the Erlang parser onwards) as:

A = [a, b, c, d, e]

That is, those sub-lists, when they're in the tail position, do not form sub-expressions. Thus:

F = [1, _, _, [_], 5 | [6, [_] | [_]]],
%% This is the same as:
%%  [1, _, _, [_], 5, 6, [_], _]
[1, 2, 3, G, 5, 6, H, 8] = F(2, 3, 8),
[4] = G(4),
[7] = H(7).

However, be very clear about the difference between , and |: the tail of a list is only defined following a |. Following a ,, you're just defining another list element.

F = [_, [_]],
%% This is **not** the same as [_, _] or its synonym: [_ | [_]]
[a, G] = F(a),
[b] = G(b).

Records

-record(vector, { x, y, z }).

test() ->
    GetZ = _#vector.z,
    7 = GetZ(#vector { z = 7 }),
    SetX = _#vector{x = _},
    V = #vector{ x = 5, y = 4 } = SetX(#vector{ y = 4 }, 5).

Maps

test() ->
    GetZ = maps:get(z, _),
    7    = GetZ(#{ z => 7 }),
    SetX = _#{x => _},
    V    = #{ x := 5, y := 4 } = SetX(#{ y => 4 }, 5).

Case

F = case _ of
        N when is_integer(N) -> N + N;
        N                    -> N
    end,
10 = F(5),
ok = F(ok).

See test_cut.erl for more examples, including the use of cuts in list comprehensions and binary construction.

Note that cuts are not allowed where the result of the cut can only be useful by interacting with the evaluation scope. For example:

F = begin _, _, _ end.

This is not allowed, because the arguments to F would have to be evaluated before the invocation of its body, which would then have no effect, as they're already fully evaluated by that point.

Do

The do parse-transformer permits Haskell-style do-notation in Erlang, which makes using monads, and monad transformers possible and easy. (Without do-notation, monads tend to look like a lot of line noise.)

The Inevitable Monad Tutorial

The Mechanics of a Comma

What follows is a brief and mechanical introduction to monads. It differs from a lot of the Haskell monad tutorials, because they tend to view monads as a means of achieving sequencing of operations in Haskell, which is challenging because Haskell is a lazy language. Erlang is not a lazy language, but the abstractions possible from using monads are still worthwhile.

Let's say we have the three lines of code:

A = foo(),
B = bar(A, dog),
ok.

They are three, simple statements, which are evaluated consecutively. What a monad gives you is control over what happens between the statements: in Erlang, it is a programmatic comma.

If you wanted to implement a programmatic comma, how would you do it? You might start with something like:

A = foo(),
comma(),
B = bar(A, dog),
comma(),
ok.

But that's not quite powerful enough, because unless comma/0 throws some sort of exception, it can't actually stop the subsequent expression from being evaluated. Most of the time we'd probably like the comma/0 function to be able to act on some variables which are currently in scope, and that's not possible here either. So we should extend the function comma/0 so that it takes the result of the preceding expression, and can choose whether or not the subsequent expressions should be evaluated:

comma(foo(),
      fun (A) -> comma(bar(A, dog),
                       fun (B) -> ok end)
      end).

Thus the function comma/2 takes all results from the previous expression, and controls how and whether they are passed to the next expression.

As defined, the comma/2 function is the monadic function '>>='/2.

Now it's pretty difficult to read the program with the comma/2 function (especially as Erlang annoyingly doesn't allow us to define new infix functions), which is why some special syntax is desirable. Haskell has its do-notation, and so we've borrowed from that and abused Erlang's list comprehensions. Haskell also has lovely type-classes, which we've sort of faked specifically for monads. So, with the do parse-transformer, you can write in Erlang:

do([Monad ||
    A <- foo(),
    B <- bar(A, dog),
    ok]).

which is readable and straightforward, and this is transformed into:

Monad:'>>='(foo(),
            fun (A) -> Monad:'>>='(bar(A, dog),
                                   fun (B) -> ok end)
            end).

There is no intention that this latter form is any more readable than the comma/2 form - it is not. However, it should be clear that the function Monad:'>>='/2 now has complete control over what happens: whether the fun on the right hand side ever gets invoked (and how often); and if so, with what parameter values.

Lots of different types of Monads

So now that we have some relatively nice syntax for using monads, what can we do with them? Also, in the code

do([Monad ||
    A <- foo(),
    B <- bar(A, dog),
    ok]).

what are the possible values of Monad?

The answer to the former question is almost anything; and to the latter question, is any module name that implements the monad behaviour.

Above, we covered one of the three monadic operators, '>>='/2. The others are:

  • return/1: This lifts a value into the monad. We'll see examples of this shortly.

  • fail/1: This takes a term describing the error encountered, and informs whichever monad currently in use that some sort of error has occurred.

Note that within do-notation, any function call to functions named return or fail, are automatically rewritten to invoke return or fail within the current monad.

Some people familiar with Haskell's monads may be expecting to see a fourth operator, '>>'/2. Interestingly, it turns out that you can't implement '>>'/2 in a strict language unless all your monad types are built on functions. This is because in a strict language, arguments to functions are evaluated before the function is invoked. For '>>='/2, the second argument is only reduced to a function prior to invocation of '>>='/2. But the second argument to '>>'/2 is not a function, and so in strict languages, will be fully reduced prior to '>>'/2 being invoked. This is problematic because the '>>'/2 operator is meant to be in control of whether or not subsequent expressions are evaluated. The only solution here would be to make the basic monad type a function, which would then mean that the second argument to '>>='/2 would become a function to a function to a result!

However, it is required that '>>'(A, B) behaves identically to '>>='(A, fun (_) -> B end), and so that is what we do: whenever we come to a do([Monad || A, B ]), we rewrite it to '>>='(A, fun (_) -> B end) rather than '>>'(A, B). There is no '>>'/2 operator in our Erlang monads.

The simplest monad possible is the Identity-monad:

-module(identity_m).
-behaviour(monad).
-export(['>>='/2, return/1, fail/1]).

'>>='(X, Fun) -> Fun(X).
return(X)     -> X.
fail(X)       -> throw({error, X}).

This makes our programmatic comma behave just like Erlang's comma normally does. The bind operator (that's the Haskell term for the '>>='/2 monadic operator) does not inspect the values passed to it, and always invokes the subsequent expression function.

What could we do if we did inspect the values passed to the sequencing combinators? One possibility results in the Maybe-monad:

-module(maybe_m).
-behaviour(monad).
-export(['>>='/2, return/1, fail/1]).

'>>='({just, X}, Fun) -> Fun(X);
'>>='(nothing,  _Fun) -> nothing.

return(X) -> {just, X}.
fail(_X)  -> nothing.

Thus if the result of the preceding expression is nothing, the subsequent expressions are not evaluated. This means that we can write very neat looking code which immediately stops should any failure be encountered.

if_safe_div_zero(X, Y, Fun) ->
    do([maybe_m ||
        Result <- case Y == 0 of
                      true  -> fail("Cannot divide by zero");
                      false -> return(X / Y)
                  end,
        return(Fun(Result))]).

If Y is equal to 0, then Fun will not be invoked, and the result of the if_safe_div_zero function call will be nothing. If Y is not equal to 0, then the result of the if_safe_div_zero function call will be {just, Fun(X / Y)}.

We see here that within the do-block, there is no mention of nothing or just: they are abstracted away by the Maybe-monad. As a result, it is possible to change the monad in use, without having to rewrite any further code.

One common place to use a monad like the Maybe-monad is where you'd otherwise have a lot of nested case statements in order to detect errors. For example:

write_file(Path, Data, Modes) ->
    Modes1 = [binary, write | (Modes -- [binary, write])],
    case make_binary(Data) of
        Bin when is_binary(Bin) ->
            case file:open(Path, Modes1) of
                {ok, Hdl} ->
                    case file:write(Hdl, Bin) of
                        ok ->
                            case file:sync(Hdl) of
                                ok ->
                                    file:close(Hdl);
                                {error, _} = E ->
                                    file:close(Hdl),
                                    E
                            end;
                        {error, _} = E ->
                            file:close(Hdl),
                            E
                    end;
                {error, _} = E -> E
            end;
        {error, _} = E -> E
    end.

make_binary(Bin) when is_binary(Bin) ->
    Bin;
make_binary(List) ->
    try
        iolist_to_binary(List)
    catch error:Reason ->
            {error, Reason}
    end.

can be transformed into the much shorter

write_file(Path, Data, Modes) ->
    Modes1 = [binary, write | (Modes -- [binary, write])],
    do([error_m ||
        Bin <- make_binary(Data),
        Hdl <- file:open(Path, Modes1),
        Result <- return(do([error_m ||
                             file:write(Hdl, Bin),
                             file:sync(Hdl)])),
        file:close(Hdl),
        Result]).

make_binary(Bin) when is_binary(Bin) ->
    error_m:return(Bin);
make_binary(List) ->
    try
        error_m:return(iolist_to_binary(List))
    catch error:Reason ->
            error_m:fail(Reason)
    end.

Note that we have a nested do-block so, as with the non-monadic code, we ensure that once the file is opened, we always call file:close/1 even if an error occurs in a subsequent operation. This is achieved by wrapping the nested do-block with a return/1 call: even if the inner do-block errors, the error is lifted to a non-error value in the outer do-block, and thus execution continues to the subsequent file:close/1 call.

Here we are using an Error-monad which is remarkably similar to the Maybe-monad, but matches the typical Erlang practice of indicating errors by an {error, Reason} tuple:

-module(error_m).
-behaviour(monad).
-export(['>>='/2, return/1, fail/1]).

'>>='({error, _Err} = Error, _Fun) -> Error;
'>>='({ok, Result},           Fun) -> Fun(Result);
'>>='(ok,                     Fun) -> Fun(ok).

return(X) -> {ok,    X}.
fail(X)   -> {error, X}.

Monad Transformers

Monads can be nested by having do-blocks inside do-blocks, and parameterized by defining a monad as a transformation of another, inner, monad. The State Transform is a very commonly used monad transformer, and is especially relevant for Erlang. Because Erlang is a single-assignment language, it's very common to end up with a lot of code that incrementally numbers variables:

State1 = init(Dimensions),
State2 = plant_seeds(SeedCount, State1),
{DidFlood, State3} = pour_on_water(WaterVolume, State2),
State4 = apply_sunlight(Time, State3),
{DidFlood2, State5} = pour_on_water(WaterVolume, State4),
{Crop, State6} = harvest(State5),
...

This is doubly annoying, not only because it looks awful, but also because you have to re-number many variables and references whenever a line is added or removed. Wouldn't it be nice if we could abstract out the State? We could then have a monad encapsulate the state and provide it to (and collect it from) the functions we wish to run.

Our implementation of monad-transformers (like State) uses a "hidden feature" of the Erlang distribution called parameterized modules. These are described in Parameterized Modules in Erlang.

The State-transform can be applied to any monad. If we apply it to the Identity-monad then we get what we're looking for. The key extra functionality that the State transformer provides us with is the ability to get and set (or just plain modify) state from within the inner monad. If we use both the do and cut parse-transformers, we can write:

StateT = state_t:new(identity_m),
SM = StateT:modify(_),
SMR = StateT:modify_and_return(_),
StateT:exec(
  do([StateT ||

      StateT:put(init(Dimensions)),
      SM(plant_seeds(SeedCount, _)),
      DidFlood <- SMR(pour_on_water(WaterVolume, _)),
      SM(apply_sunlight(Time, _)),
      DidFlood2 <- SMR(pour_on_water(WaterVolume, _)),
      Crop <- SMR(harvest(_)),
      ...

      ]), undefined).

We began by creating a State-transform over the Identity-monad:

StateT = state_t:new(identity_m),
...

This is the syntax for instantiating parameterized modules. StateT is a variable referencing a module instance which, in this case, is a monad.

and we define two shorthands for running functions that either just modify the state, or modify the state and return a result:

SM = StateT:modify(_),
SMR = StateT:modify_and_return(_),
...

There's a bit of bookkeeping required but we achieve our goal: there are no state variables now to renumber whenever we make a change. We used cuts to leave holes in the functions where State should be fed in; and we obeyed the protocol that if a function returns both a result and a state, it is in the form of a {Result, State} tuple. The State-transform does the rest.

Beyond Monads

There are some standard monad functions such as join/2 and sequence/2 available in the monad module. We have also implemented monad_plus which works for monads where there's an obvious sense of zero and plus (currently Maybe-monad, List-monad, and Omega-monad). The associated functions guard, msum and mfilter are available in the monad_plus module.

In many cases, a fairly mechanical translation from Haskell to Erlang is possible, so converting other monads or combinators should mostly be straightforward. However, the lack of type classes in Erlang is limiting.

Import As

For cosmetic reasons, it is sometimes desirable to import a remote function into the current module's namespace. This eliminates the need to continuously prefix calls to that function with its module name. Erlang can already do this by using the -import attribute. However, this always uses the same function name locally as remotely which can either lead to misleading function names or even collisions. Consider, for example, wishing to import length functions from two remote modules. Aliasing of the functions is one solution to this.

For example:

-import_as({lists, [{duplicate/2, dup}]}).

test() ->
    [a, a, a, a] = dup(4, a).

As with -import, the left of the tuple is the module name, but the right of the tuple is a list of pairs, with the left being the function to import from the module (including arity) and the right being the local name by which the function is to be known--the alias. The implementation creates a local function, so the alias is safe to use in, for example, Var = fun dup/2 expressions.

License

(The MPL)

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License.

The Original Code is Erlando.

The Initial Developer of the Original Code is VMware, Inc. Copyright (c) 2011-2013 VMware, Inc. All rights reserved.

More Repositories

1

rabbitmq-server

Open source RabbitMQ: core server and tier 1 (built-in) plugins
Starlark
11,952
star
2

rabbitmq-tutorials

Tutorials for using RabbitMQ in various ways
Java
6,393
star
3

rabbitmq-dotnet-client

RabbitMQ .NET client for .NET Standard 2.0+ and .NET 4.6.2+
C#
2,056
star
4

rabbitmq-delayed-message-exchange

Delayed Messaging for RabbitMQ
Erlang
1,992
star
5

internals

High level architecture overview
1,444
star
6

amqp091-go

An AMQP 0-9-1 Go client maintained by the RabbitMQ team. Originally by @streadway: `streadway/amqp`
Go
1,319
star
7

rabbitmq-java-client

RabbitMQ Java client
Java
1,227
star
8

cluster-operator

RabbitMQ Cluster Kubernetes Operator
Go
865
star
9

ra

A Raft implementation for Erlang and Elixir that strives to be efficient and make it easier to use multiple Raft clusters in a single system.
Erlang
800
star
10

rabbitmq-website

RabbitMQ website
JavaScript
769
star
11

erlang-rpm

Latest Erlang/OTP releases packaged as a zero dependency RPM, just enough for running RabbitMQ
Shell
540
star
12

rabbitmq-management

RabbitMQ Management UI and HTTP API
Erlang
369
star
13

tls-gen

Generates self-signed x509/TLS/SSL certificates useful for development
Python
362
star
14

rabbitmq-perf-test

A load testing tool
Java
355
star
15

khepri

Khepri is a tree-like replicated on-disk database library for Erlang and Elixir.
Erlang
317
star
16

rabbitmq-sharding

Sharded logical queues for RabbitMQ: a queue type which provides improved parallelism and thoughput at the cost of total ordering
Erlang
303
star
17

rabbitmq-peer-discovery-k8s

Kubernetes-based peer discovery mechanism for RabbitMQ
Erlang
296
star
18

rabbitmq-objc-client

RabbitMQ client for Objective-C and Swift
Objective-C
241
star
19

chef-cookbook

Development repository for Chef cookbook RabbitMQ
Ruby
211
star
20

rmq-0mq

ZeroMQ support in RabbitMQ
Erlang
210
star
21

rabbitmq-consistent-hash-exchange

RabbitMQ Consistent Hash Exchange Type
Erlang
209
star
22

rabbitmq-auth-backend-http

HTTP-based authorisation and authentication for RabbitMQ
Makefile
199
star
23

rabbitmq-erlang-client

Erlang client for RabbitMQ
Erlang
185
star
24

rabbitmq-mqtt

RabbitMQ MQTT plugin
Erlang
173
star
25

rabbitmq-stream-go-client

A client library for RabbitMQ streams
Go
167
star
26

rabbitmq-stream-rust-client

A client library for RabbitMQ streams
Rust
148
star
27

rabbitmq-prometheus

A minimalistic Prometheus exporter of core RabbitMQ metrics
Erlang
145
star
28

looking_glass

An Erlang/Elixir/BEAM profiler tool
Erlang
139
star
29

hop

RabbitMQ HTTP API client for Java, Groovy, and other JVM languages
Java
137
star
30

messaging-topology-operator

RabbitMQ messaging topology operator
Go
123
star
31

rabbitmq-cli

Command line tools for RabbitMQ
Elixir
105
star
32

rabbitmq-stream-dotnet-client

RabbitMQ client for the stream protocol
C#
100
star
33

rabbitmq-web-stomp-examples

Makefile
94
star
34

rabbitmq-amqp1.0

AMQP 1.0 support for RabbitMQ
Erlang
93
star
35

rabbitmq-web-stomp

Provides support for STOMP over WebSockets
Erlang
89
star
36

rabbitmq-recent-history-exchange

RabbitMQ Recent History Exchange
Makefile
82
star
37

diy-kubernetes-examples

Examples that demonstrate how deploy a RabbitMQ cluster to Kubernetes, the DIY way
Makefile
82
star
38

rabbitmq-event-exchange

Expose broker events as messages
Erlang
78
star
39

rabbitmq-clusterer

This project is ABANDONWARE. Use https://www.rabbitmq.com/cluster-formation.html instead.
Erlang
72
star
40

rabbitmq-message-timestamp

A RabbitMQ plugin that adds a timestamp to all incoming messages
Makefile
72
star
41

rabbitmq-common

Common library used by rabbitmq-server and rabbitmq-erlang-client
Erlang
66
star
42

rabbitmq-c

The official rabbitmq-c sources have moved to:
C
65
star
43

tgir

Official repository for Thank Goodness It's RabbitMQ (TGIR)!
Makefile
65
star
44

rabbitmq-jms-client

RabbitMQ JMS client
Java
61
star
45

rabbit-socks

Websocket and Socket.IO support for RabbitMQ (deprecated -- see https://github.com/sockjs/sockjs-erlang instead)
Erlang
58
star
46

rabbitmq-web-mqtt

Provides support for MQTT over WebSockets
Erlang
55
star
47

rabbitmq-stream-java-client

RabbitMQ Stream Java Client
Java
55
star
48

rabbitmq-top

Adds top-like information on the Erlang VM to the management plugin.
Makefile
55
star
49

rabbitmq-shovel

RabbitMQ Shovel plugin
Erlang
53
star
50

rabbitmq-auth-mechanism-ssl

RabbitMQ TLS (x509 certificate) authentication mechanism
Makefile
52
star
51

aten

An adaptive accrual node failure detection library for Elixir and Erlang
Erlang
50
star
52

rabbitmq-stomp

RabbitMQ STOMP plugin
Erlang
49
star
53

rabbitmq-tracing

RabbitMQ Tracing
Erlang
48
star
54

mnevis

Raft-based, consensus oriented implementation of Mnesia transactions
Erlang
48
star
55

gen-batch-server

A generic batching server for Erlang and Elixir
Erlang
47
star
56

rabbitmq-priority-queue

Priority Queues
46
star
57

osiris

Log based streaming subsystem for RabbitMQ
Erlang
45
star
58

rabbitmq-management-visualiser

RabbitMQ Topology Visualiser
JavaScript
41
star
59

rabbitmq-oauth2-tutorial

Explore integration of RabbitMQ with Oauth 2.0 auth backend plugin
Shell
41
star
60

rabbitmq-peer-discovery-consul

Consul-based peer discovery backend for RabbitMQ 3.7.0+
Erlang
40
star
61

rabbitmq-federation

RabbitMQ Federation plugin
Erlang
39
star
62

rabbitmq-auth-backend-oauth2

RabbitMQ authorization backend that uses OAuth 2.0 (JWT) tokens
Erlang
38
star
63

rabbitmq-codegen

RabbitMQ protocol code-generation and machine-readable spec
Python
37
star
64

support-tools

A staging area for various support and troubleshooting tools that are not (or not yet) included into RabbitMQ distribution
Shell
36
star
65

ra-kv-store

Raft-based key-value store
Clojure
33
star
66

rabbitmq-perf-html

Web page to view performance results
JavaScript
33
star
67

rabbitmq-web-mqtt-examples

Examples for the Web MQTT plugin
JavaScript
32
star
68

rabbitmq-public-umbrella

Work with ease on multiple RabbitMQ sub-projects, e.g. core broker, plugins and some client libraries
Makefile
32
star
69

rules_erlang

Bazel rules for building Erlang applications and libraries
Starlark
32
star
70

rabbitmq-smtp

RabbitMQ SMTP gateway
Erlang
31
star
71

rabbitmq-metronome

RabbitMQ example plugin
Makefile
27
star
72

rabbitmq-rtopic-exchange

RabbitMQ Reverse Topic Exchange
Erlang
27
star
73

horus

Erlang library to create standalone modules from anonymous functions
Erlang
25
star
74

workloads

Continuous validation of RabbitMQ workloads
JavaScript
24
star
75

rabbitmq-tracer

AMQP 0-9-1 protocol analyzer
Java
24
star
76

rabbitmq-peer-discovery-aws

AWS-based peer discovery backend for RabbitMQ 3.7.0+
Erlang
24
star
77

rabbitmq-shovel-management

RabbitMQ Shovel Management
Makefile
23
star
78

rabbitmq-auth-backend-ldap

RabbitMQ LDAP authentication
Erlang
22
star
79

rabbitmq-management-themes

Makefile
22
star
80

rabbitmq-auth-backend-amqp

Authentication over AMQP RPC
Erlang
20
star
81

rabbitmq-amqp1.0-client

Erlang AMQP 1.0 client
Erlang
20
star
82

erlang-data-structures

Erlang Data Structures
Erlang
20
star
83

chocolatey-package

RabbitMQ chocolatey package
PowerShell
19
star
84

lz4-erlang

LZ4 compression library for Erlang.
C
19
star
85

rabbitmq-service-nodejs-sample

A simple node.js sample app for the RabbitMQ service/add-on
JavaScript
18
star
86

rabbitmq-auth-backend-oauth2-spike

See rabbitmq/rabbitmq-auth-backend-oauth2 instead.
Erlang
17
star
87

rabbitmq-msg-store-index-eleveldb

LevelDB-based message store index for RabbitMQ
Erlang
17
star
88

rabbitmq-management-agent

RabbitMQ Management Agent
Erlang
17
star
89

rabbitmq-auth-backend-cache

Authorisation result caching plugin (backend) for RabbitMQ
Erlang
17
star
90

rabbitmq-jsonrpc-channel

RabbitMQ JSON-RPC Channels
JavaScript
15
star
91

rabbitmq-ha

Highly available queues for RabbitMQ
Erlang
15
star
92

rabbitmq-jsonrpc

RabbitMQ JSON-RPC Integration
Makefile
15
star
93

stdout_formatter

Erlang library to format paragraphs, lists and tables as plain text
Erlang
15
star
94

rabbitmq-peer-discovery-etcd

etcd-based peer discovery backend for RabbitMQ 3.7.0+
Erlang
15
star
95

rabbitmq-federation-management

RabbitMQ Federation Management
Makefile
14
star
96

credentials-obfuscation

Tiny library/OTP app for credential obfuscation
Erlang
14
star
97

rabbitmq-server-release

RabbitMQ packaging and release engineering bits that do not belong to the Concourse pipelines.
Shell
13
star
98

seshat

Erlang
13
star
99

rabbitmq-jms-topic-exchange

Custom exchange that implements JMS topic selection for RabbitMQ
Erlang
13
star
100

rabbitmq-store-exporter

RabbitMQ Store Exporter
Erlang
12
star