• Stars
    star
    2,967
  • Rank 15,260 (Top 0.4 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created about 2 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

OpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated,YOLOv5, YOLOv6, YOLOv7, YOLOv8,YOLOX, PPYOLOE, etc.

English | 简体中文

📄 Table of Contents

🥳 🚀 What's New 🔝

💎 v0.6.0 was released on 15/8/2023:

  • Support YOLOv5 instance segmentation
  • Support YOLOX-Pose based on MMPose
  • Add 15 minutes instance segmentation tutorial.
  • YOLOv5 supports using mask annotation to optimize bbox
  • Add Multi-scale training and testing docs

For release history and update details, please refer to changelog.

✨ Highlight 🔝

We are excited to announce our latest work on real-time object recognition tasks, RTMDet, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the technical report. Pre-trained models are here.

PWC PWC PWC

Task Dataset AP FPS(TRT FP16 BS1 3090)
Object Detection COCO 52.8 322
Instance Segmentation COCO 44.6 188
Rotated Object Detection DOTA 78.9(single-scale)/81.3(multi-scale) 121

MMYOLO currently implements the object detection and rotated object detection algorithm, but it has a significant training acceleration compared to the MMDeteciton version. The training speed is 2.6 times faster than the previous version.

📖 Introduction 🔝

MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and MMDetection. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.6+.

Major features
  • 🕹️ Unified and convenient benchmark

    MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.

  • 📚 Rich and detailed documentation

    MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.

  • 🧩 Modular Design

    MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.

BaseModule-P5 The figure above is contributed by RangeKing@GitHub, thank you very much!

And the figure of P6 model is in model_design.md.

🛠️ Installation 🔝

MMYOLO relies on PyTorch, MMCV, MMEngine, and MMDetection. Below are quick steps for installation. Please refer to the Install Guide for more detailed instructions.

conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .

👨‍🏫 Tutorial 🔝

MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read MMDetection Overview for the first understanding of MMDetection.

The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about MMDetection User Guide and Advanced Guide.

For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our documentation.

Get Started
Recommended Topics
Common Usage
Useful Tools
Basic Tutorials
Advanced Tutorials
Descriptions

📊 Overview of Benchmark and Model Zoo 🔝

Results and models are available in the model zoo.

Supported Tasks
  • Object detection
  • Rotated object detection
Supported Algorithms
Supported Datasets
  • COCO Dataset
  • VOC Dataset
  • CrowdHuman Dataset
  • DOTA 1.0 Dataset
Module Components
Backbones Necks Loss Common
  • YOLOv5CSPDarknet
  • YOLOv8CSPDarknet
  • YOLOXCSPDarknet
  • EfficientRep
  • CSPNeXt
  • YOLOv7Backbone
  • PPYOLOECSPResNet
  • mmdet backbone
  • mmcls backbone
  • timm
  • YOLOv5PAFPN
  • YOLOv8PAFPN
  • YOLOv6RepPAFPN
  • YOLOXPAFPN
  • CSPNeXtPAFPN
  • YOLOv7PAFPN
  • PPYOLOECSPPAFPN
  • IoULoss
  • mmdet loss

❓ FAQ 🔝

Please refer to the FAQ for frequently asked questions.

🙌 Contributing 🔝

We appreciate all contributions to improving MMYOLO. Ongoing projects can be found in our GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.

🤝 Acknowledgement 🔝

MMYOLO is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new detectors.

🖊️ Citation 🔝

If you find this project useful in your research, please consider citing:

@misc{mmyolo2022,
    title={{MMYOLO: OpenMMLab YOLO} series toolbox and benchmark},
    author={MMYOLO Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmyolo}},
    year={2022}
}

🎫 License 🔝

This project is released under the GPL 3.0 license.

🏗️ Projects in OpenMMLab 🔝

  • MMEngine: OpenMMLab foundational library for training deep learning models.
  • MMCV: OpenMMLab foundational library for computer vision.
  • MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
  • MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMDeploy: OpenMMLab model deployment framework.
  • MIM: MIM installs OpenMMLab packages.
  • MMEval: OpenMMLab machine learning evaluation library.
  • Playground: A central hub for gathering and showcasing amazing projects built upon OpenMMLab.

More Repositories

1

mmdetection

OpenMMLab Detection Toolbox and Benchmark
Python
29,487
star
2

mmsegmentation

OpenMMLab Semantic Segmentation Toolbox and Benchmark.
Python
7,992
star
3

mmagic

OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox. Unlock the magic 🪄: Generative-AI (AIGC), easy-to-use APIs, awsome model zoo, diffusion models, for text-to-image generation, image/video restoration/enhancement, etc.
Jupyter Notebook
6,909
star
4

mmcv

OpenMMLab Computer Vision Foundation
Python
5,879
star
5

mmpose

OpenMMLab Pose Estimation Toolbox and Benchmark.
Python
5,625
star
6

Amphion

Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.
Python
5,482
star
7

mmdetection3d

OpenMMLab's next-generation platform for general 3D object detection.
Python
5,216
star
8

OpenPCDet

OpenPCDet Toolbox for LiDAR-based 3D Object Detection.
Python
4,658
star
9

mmocr

OpenMMLab Text Detection, Recognition and Understanding Toolbox
Python
4,270
star
10

mmaction2

OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
Python
4,236
star
11

mmtracking

OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.
Python
3,538
star
12

mmpretrain

OpenMMLab Pre-training Toolbox and Benchmark
Python
3,383
star
13

mmselfsup

OpenMMLab Self-Supervised Learning Toolbox and Benchmark
Python
3,182
star
14

mmskeleton

A OpenMMLAB toolbox for human pose estimation, skeleton-based action recognition, and action synthesis.
Python
2,928
star
15

mmdeploy

OpenMMLab Model Deployment Framework
Python
2,744
star
16

mmgeneration

MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.
Python
1,881
star
17

mmaction

An open-source toolbox for action understanding based on PyTorch
Python
1,853
star
18

mmrotate

OpenMMLab Rotated Object Detection Toolbox and Benchmark
Python
1,843
star
19

mmrazor

OpenMMLab Model Compression Toolbox and Benchmark.
Python
1,470
star
20

Multimodal-GPT

Multimodal-GPT
Python
1,461
star
21

mmfashion

Open-source toolbox for visual fashion analysis based on PyTorch
Python
1,245
star
22

mmhuman3d

OpenMMLab 3D Human Parametric Model Toolbox and Benchmark
Python
1,232
star
23

mmengine

OpenMMLab Foundational Library for Training Deep Learning Models
Python
1,161
star
24

playground

A central hub for gathering and showcasing amazing projects that extend OpenMMLab with SAM and other exciting features.
Python
1,117
star
25

OpenMMLabCourse

OpenMMLab course index and stuff
Jupyter Notebook
1,000
star
26

mmflow

OpenMMLab optical flow toolbox and benchmark
Python
942
star
27

PIA

[CVPR 2024] PIA, your Personalized Image Animator. Animate your images by text prompt, combing with Dreambooth, achieving stunning videos. PIA,你的个性化图像动画生成器,利用文本提示将图像变为奇妙的动画
Python
867
star
28

mmfewshot

OpenMMLab FewShot Learning Toolbox and Benchmark
Python
697
star
29

PowerPaint

[ECCV 2024] PowerPaint, a versatile image inpainting model that supports text-guided object inpainting, object removal, image outpainting and shape-guided object inpainting with only a single model. 一个高质量多功能的图像修补模型,可以同时支持插入物体、移除物体、图像扩展、形状可控的物体生成,只需要一个模型
Python
526
star
30

awesome-vit

400
star
31

OpenUnReID

PyTorch open-source toolbox for unsupervised or domain adaptive object re-ID.
Python
393
star
32

labelbee-client

Out-of-the-box Annotation Toolbox
JavaScript
380
star
33

FoleyCrafter

FoleyCrafter: Bring Silent Videos to Life with Lifelike and Synchronized Sounds. AI拟音大师,给你的无声视频添加生动而且同步的音效 😝
Python
379
star
34

mim

MIM Installs OpenMMLab Packages
Python
346
star
35

denseflow

Extracting optical flow and frames
C++
294
star
36

mmeval

A unified evaluation library for multiple machine learning libraries
Python
254
star
37

MMGEN-FaceStylor

Python
249
star
38

labelbee

LabelBee is an annotation Library
TypeScript
244
star
39

Live2Diff

Live2Diff: A Pipeline that processes Live video streams by a uni-directional video Diffusion model.
Python
150
star
40

OpenMMLabCamp

Jupyter Notebook
93
star
41

polynet

The Github Repo for PolyNet
77
star
42

CLUE

C++ Lightweight Utility Extensions
C++
70
star
43

AnyControl

[ECCV 2024] AnyControl, a multi-control image synthesis model that supports any combination of user provided control signals. 一个支持用户自由输入控制信号的图像生成模型,能够根据多种控制生成自然和谐的结果!
Python
66
star
44

StyleShot

StyleShot: A SnapShot on Any Style. 一款可以迁移任意风格到任意内容的模型,无需针对图片微调,即能生成高质量的个性风格化图片!
Python
59
star
45

mim-example

Python
58
star
46

mmengine-template

Python
49
star
47

ecosystem

37
star
48

mmstyles

Latex style file to facilitate writing of technical papers
TeX
37
star
49

mmpose-webcam-demo

Python
25
star
50

pre-commit-hooks

Python
17
star
51

mdformat-openmmlab

Python
6
star
52

.github

4
star