• Stars
    star
    216
  • Rank 183,179 (Top 4 %)
  • Language
  • License
    MIT License
  • Created over 5 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Collection of dataset and corresponding benchmark for Rasa NLU

rasa-nlu-benchmark

Collection of dataset and corresponding benchmark for Rasa NLU

GitHub stars GitHub issues GitHub license

Introduction

Rasa NLU is a powerful and open-source natural language processing tool for intent classification and entity extraction in chatbots.

However, we found that there is no published public dataset and the corresponding benchmark. This makes it difficult to evaluate the performance of our own NLU system built by Rasa.

Therefore, this project aims to collect and organize datasets and baselines for Task-Oriented Dialogue, which will be in the data format required by Rasa NLU and you can directly use them in your Rasa NLU system.

Datasets

All the datasets have been organized and archived in the data directory

Following information is included for each dataset:

  • Name
  • Language
  • Task
  • Size(train/test)
  • Intent/Entity Nums
  • Link (Website Or Paper)
Name Language Task Size(Train/Test) Intent/Entity Nums Link
ATIS en Airline Travel Information 4978/893 26/129 more detail
Snips en 7 intents, including:AddToPlaylist, BookRestaurant... 13802/699 7/72 more detail
AskUbuntuCorpus en 5 intents, questions about Ubuntu 127/35 5/3 more detail
Facebook Multilingual Task Oriented Dataset en 3 domains, includeing:alarm,weather,remainder 30521/8621 12/25 more detail
SMP2019 zh 29 domains, including: app, email... 2063/480 24/62 more detail
Check flow dataset zh 13 intents, some request and inform 809/210 13/6 more detail
MSRA_NER zh 1 intent, includeing various kinds of news and 3 kinds of entities 20864/4636 1/3 more detail
ToutiaoNews zh 7 intent, includeing 7 kinds of news 325279/57409 7/0 more detail

Note:

  • For the SMP2019 and CheckFlow dataset, the official does not divide the training set and test set, we have divided according to 8:2 by ourselves.

Benchmark

Baseline Pipeline

Result

Dataset NLU Pipeline Intent Classification Entity Extraction
auc p r f1 auc p r f1
ATIS(en) pretrained_embeddings_spacy 0.91 0.91 0.91 0.91 0.98 0.98 0.98 0.98
supervised_embeddings 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.98
Snips(en) pretrained_embeddings_spacy 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00
supervised_embeddings 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AskUbuntuCorpus(en) pretrained_embeddings_spacy 0.89 0.89 0.89 0.89 0.95 0.95 0.95 0.95
supervised_embeddings 0.86 0.86 0.86 0.86 0.95 0.95 0.95 0.95
Facebook Multilingual Task Oriented Dataset(en) pretrained_embeddings_spacy 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.98
supervised_embeddings 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98
SMP2019(zh) rasa_nlu_chi 0.76 0.83 0.76 0.78 0.79 0.80 0.79 0.77
CheckFlow(zh) rasa_nlu_chi 0.95 0.95 0.95 0.94 1.00 1.00 1.00 1.00
MSRA_NER(zh) rasa_nlu_chi N/A N/A N/A N/A 0.98 0.98 0.98 0.98

We feather use Rasa official Comparing NLU Pipelines tool to compare pretrained_embeddings_spacy and supervised_embeddings on datasets of AskUbuntuCorpus(small size) and snip(big size).

图片名称

We can see that when the training data is relatively small, pretrained_embeddings_spacy is better, and when the amount of data is sufficient, supervised_embeddings will be better.