• Stars
    star
    894
  • Rank 51,071 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Implementation of YOLO v3 object detector in Tensorflow (TF-Slim)

tensorflow-yolo-v3

Implementation of YOLO v3 object detector in Tensorflow (TF-Slim). Full tutorial can be found here.

Tested on Python 3.5, Tensorflow 1.11.0 on Ubuntu 16.04.

Todo list:

  • YOLO v3 architecture
  • Basic working demo
  • Weights converter (util for exporting loaded COCO weights as TF checkpoint)
  • Training pipeline
  • More backends

How to run the demo:

To run demo type this in the command line:

  1. Download COCO class names file: wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names
  2. Download and convert model weights:
    1. Download binary file with desired weights:
      1. Full weights: wget https://pjreddie.com/media/files/yolov3.weights
      2. Tiny weights: wget https://pjreddie.com/media/files/yolov3-tiny.weights
      3. SPP weights: wget https://pjreddie.com/media/files/yolov3-spp.weights
    2. Run python ./convert_weights.py and python ./convert_weights_pb.py
  3. Run python ./demo.py --input_img <path-to-image> --output_img <name-of-output-image> --frozen_model <path-to-frozen-model>

####Optional Flags

  1. convert_weights:
    1. --class_names
      1. Path to the class names file
    2. --weights_file
      1. Path to the desired weights file
    3. --data_format
      1. NCHW (gpu only) or NHWC
    4. --tiny
      1. Use yolov3-tiny
    5. --spp
      1. Use yolov3-spp
    6. --ckpt_file
      1. Output checkpoint file
  2. convert_weights_pb.py:
    1. --class_names 1. Path to the class names file
    2. --weights_file
      1. Path to the desired weights file
    3. --data_format
      1. NCHW (gpu only) or NHWC
    4. --tiny
      1. Use yolov3-tiny
    5. --spp
      1. Use yolov3-spp
    6. --output_graph
      1. Location to write the output .pb graph to
  3. demo.py
    1. --class_names
      1. Path to the class names file
    2. --weights_file
      1. Path to the desired weights file
    3. --data_format
      1. NCHW (gpu only) or NHWC
    4. --ckpt_file
      1. Path to the checkpoint file
    5. --frozen_model
      1. Path to the frozen model
    6. --conf_threshold
      1. Desired confidence threshold
    7. --iou_threshold
      1. Desired iou threshold
    8. --gpu_memory_fraction
      1. Fraction of gpu memory to work with