• Stars
    star
    432
  • Rank 100,650 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created about 2 years ago
  • Updated 8 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

On-Device Training Under 256KB Memory [NeurIPS'22]

On-Device Training Under 256KB Memory

[arXiv] [Website] [YouTube] [BiliBili]

News

If you are interested in getting updates, please sign up here to get notified.

  • [11/28/2022] Our poster session is on Wed Nov 30 11:00 am-1:00 pm (New Orleans time)@ Hall J #702. Stop by if you are interested!
  • [10/04/2022] Our paper on tiny on-device training is highlighted on the MIT homepage!
  • [09/16/2022] Our paper is accepted to NeurIPS 2022!
  • [06/30/2022] Our video demo of on-device training on micro-controllers is now available online!
  • [06/30/2022] Our paper is released on arXiv.

Overview

In the past, DNNs training happens on the cloud. Can we learn on the edge? The large memory usage is the challenge. The tight memory budget (50,000x smaller than GPUs) makes deep learning deployment difficult even for inference, let alone training.

teaser

In this work, we enable on-device training under 256KB memory, using less than 1/1000 memory of PyTorch while matching the accuracy on the visual wake words application using system-algorithm co-design.

Our work contains three parts to achieve efficient on-device training:

  1. Quantization-aware scaling and sparse update (algorithm)
  2. Compile-time autodiff and system support for sparse update (system)
  3. Codegen with TinyEngine backend (system)

If you are interested in the full-stack optimization of the system, you can go over each step one by one. If you are only interested in building a tiny training demo, you may directly refer to Tiny Training Engine for the demo setup.

1. Quantization-aware Scaling (QAS) and Sparse Update

In order to optimize a real quantized graph (see difference below), we propose Quantization-aware Scaling (QAS) to automatically scale the gradient, which effectively stabilizes the training and matches the FP32 accuracy

We further design sparse layer and sparse tensor update to skip the gradient computation of less important layers and sub-tensors, where the best sparsity under varying memory budgets is find an automated method based on the contribution analysis.

We provides scripts to evaluate the accuracy of QAS and Sparse Update in the algorithm folder, and we will use the pretrained models and sparse update scheme for our next step compilation.

2. Compile-time Autodiff and System Support for Sparse Update

Another highlight of our work is Tiny Training Engine (TTE), which offloads auto-diff from run-time to compile-time and uses codegen to minimize run-time overhead. It also supports graph pruning and reordering to support sparse updates, translating the theoretical numbers into measured memory saving and speedup.

The code related to compilation, autodiff, and system support for sparse update are provided in the compilation folder. It will translate the pytorch models into an intermediate representation (IR), perform the autodiff at compile-time, and the apply the sparse update rules to reduce memory usage. Finally, the pruned training graph will be translated into a JSON file to ease MCU deployment.

3. Codegen with TinyEngine Backend

After obtaining the JSON representation of training graphs, the next step is to follow the tutorial in Tiny Training Engine to deploy the model to the MCU to compile the demo shown at the beginning. Our optimized kernels and co-designs not only enable training under 256KB but also achieve faster speed than conventional implementations such as TF-Lite.

Citation

 @inproceedings{lin2022ondevice,
    title     = {On-Device Training Under 256KB Memory},
    author    = {Lin, Ji and Zhu, Ligeng and Chen, Wei-Ming and Wang, Wei-Chen and Gan, Chuang and Han, Song},
    booktitle = {Annual Conference on Neural Information Processing Systems (NeurIPS)},
    year      = {2022}
} 

Related Work

License

This repository is released under the MIT license. See LICENSE for additional details.

More Repositories

1

streaming-llm

[ICLR 2024] Efficient Streaming Language Models with Attention Sinks
Python
6,530
star
2

bevfusion

[ICRA'23] BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation
Python
2,286
star
3

temporal-shift-module

[ICCV 2019] TSM: Temporal Shift Module for Efficient Video Understanding
Python
2,060
star
4

once-for-all

[ICLR 2020] Once for All: Train One Network and Specialize it for Efficient Deployment
Python
1,866
star
5

llm-awq

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration
Python
1,687
star
6

proxylessnas

[ICLR 2019] ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
C++
1,420
star
7

torchquantum

A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers.
Jupyter Notebook
1,304
star
8

data-efficient-gans

[NeurIPS 2020] Differentiable Augmentation for Data-Efficient GAN Training
Python
1,277
star
9

efficientvit

EfficientViT is a new family of vision models for efficient high-resolution vision.
Python
1,218
star
10

torchsparse

[MICRO'23, MLSys'22] TorchSparse: Efficient Training and Inference Framework for Sparse Convolution on GPUs.
Cuda
1,181
star
11

smoothquant

[ICML 2023] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models
Python
1,175
star
12

gan-compression

[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs
Python
1,104
star
13

anycost-gan

[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing
Python
778
star
14

tinyml

Python
755
star
15

TinyChatEngine

TinyChatEngine: On-Device LLM Inference Library
C++
730
star
16

tinyengine

[NeurIPS 2020] MCUNet: Tiny Deep Learning on IoT Devices; [NeurIPS 2021] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning; [NeurIPS 2022] MCUNetV3: On-Device Training Under 256KB Memory
C
717
star
17

fastcomposer

[IJCV] FastComposer: Tuning-Free Multi-Subject Image Generation with Localized Attention
Python
644
star
18

pvcnn

[NeurIPS 2019, Spotlight] Point-Voxel CNN for Efficient 3D Deep Learning
Python
639
star
19

lite-transformer

[ICLR 2020] Lite Transformer with Long-Short Range Attention
Python
589
star
20

spvnas

[ECCV 2020] Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
Python
577
star
21

distrifuser

[CVPR 2024 Highlight] DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models
Python
538
star
22

mcunet

[NeurIPS 2020] MCUNet: Tiny Deep Learning on IoT Devices; [NeurIPS 2021] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Python
460
star
23

amc

[ECCV 2018] AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Python
428
star
24

dlg

[NeurIPS 2019] Deep Leakage From Gradients
Python
400
star
25

haq

[CVPR 2019, Oral] HAQ: Hardware-Aware Automated Quantization with Mixed Precision
Python
368
star
26

offsite-tuning

Offsite-Tuning: Transfer Learning without Full Model
Python
365
star
27

hardware-aware-transformers

[ACL'20] HAT: Hardware-Aware Transformers for Efficient Natural Language Processing
Python
321
star
28

litepose

[CVPR'22] Lite Pose: Efficient Architecture Design for 2D Human Pose Estimation
Python
304
star
29

inter-operator-scheduler

[MLSys 2021] IOS: Inter-Operator Scheduler for CNN Acceleration
C++
191
star
30

amc-models

[ECCV 2018] AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Python
166
star
31

apq

[CVPR 2020] APQ: Joint Search for Network Architecture, Pruning and Quantization Policy
Python
156
star
32

parallel-computing-tutorial

C++
134
star
33

flatformer

[CVPR'23] FlatFormer: Flattened Window Attention for Efficient Point Cloud Transformer
Python
119
star
34

patch_conv

Patch convolution to avoid large GPU memory usage of Conv2D
Python
74
star
35

6s965-fall2022

Jupyter Notebook
64
star
36

sparsevit

[CVPR'23] SparseViT: Revisiting Activation Sparsity for Efficient High-Resolution Vision Transformer
Python
48
star
37

bnn-icestick

Binary Neural Network on IceStick FPGA.
Jupyter Notebook
47
star
38

e3d

Efficient 3D Deep Learning
46
star
39

neurips-micronet

[JMLR'20] NeurIPS 2019 MicroNet Challenge Efficient Language Modeling, Champion
Jupyter Notebook
40
star
40

spatten-llm

[HPCA'21] SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning
Scala
32
star
41

tinychat-tutorial

C++
28
star
42

pruning-sparsity-publications

14
star
43

iccad-tinyml-open

[ICCAD'22 TinyML Contest] Efficient Heart Stroke Detection on Low-cost Microcontrollers
C
14
star
44

calo-cluster

Jupyter Notebook
5
star
45

ml-blood-pressure

Python
5
star
46

gan-compression-dynamic

Python
3
star
47

data-efficient-gans-dynamic

Python
3
star