UnivNet
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
This is an unofficial PyTorch implementation of Jang et al. (Kakao), UnivNet.
Audio samples are uploaded!
Notes
Both UnivNet-c16 and c32 results and the pre-trained weights have been uploaded.
For both models, our implementation matches the objective scores (PESQ and RMSE) of the original paper.
Key Features
-
According to the authors of the paper, UnivNet obtained the best objective results among the recent GAN-based neural vocoders (including HiFi-GAN) as well as outperforming HiFi-GAN in a subjective evaluation. Also its inference speed is 1.5 times faster than HiFi-GAN.
-
This repository uses the same mel-spectrogram function as the Official HiFi-GAN, which is compatible with NVIDIA/tacotron2.
-
Our default mel calculation hyperparameters are as below, following the original paper.
audio: n_mel_channels: 100 filter_length: 1024 hop_length: 256 # WARNING: this can't be changed. win_length: 1024 sampling_rate: 24000 mel_fmin: 0.0 mel_fmax: 12000.0
You can modify the hyperparameters to be compatible with your acoustic model.
Prerequisites
The implementation needs following dependencies.
- Python 3.6
- PyTorch 1.6.0
- NumPy 1.17.4 and SciPy 1.5.4
- Install other dependencies in requirements.txt.
pip install -r requirements.txt
Datasets
Preparing Data
- Download the training dataset. This can be any wav file with sampling rate 24,000Hz. The original paper used LibriTTS.
- LibriTTS train-clean-360 split tar.gz link
- Unzip and place its contents under
datasets/LibriTTS/train-clean-360
.
- If you want to use wav files with a different sampling rate, please edit the configuration file (see below).
Note: The mel-spectrograms calculated from audio file will be saved as **.mel
at first, and then loaded from disk afterwards.
Preparing Metadata
Following the format from NVIDIA/tacotron2, the metadata should be formatted as:
path_to_wav|transcript|speaker_id
path_to_wav|transcript|speaker_id
...
Train/validation metadata for LibriTTS train-clean-360 split and are already prepared in datasets/metadata
.
5% of the train-clean-360 utterances were randomly sampled for validation.
Since this model is a vocoder, the transcripts are NOT used during training.
Train
Preparing Configuration Files
-
Run
cp config/default_c32.yaml config/config.yaml
and then editconfig.yaml
-
Write down the root path of train/validation in the
data
section. The data loader parses list of files within the path recursively.data: train_dir: 'datasets/' # root path of train data (either relative/absoulte path is ok) train_meta: 'metadata/libritts_train_clean_360_train.txt' # relative path of metadata file from train_dir val_dir: 'datasets/' # root path of validation data val_meta: 'metadata/libritts_train_clean_360_val.txt' # relative path of metadata file from val_dir
We provide the default metadata for LibriTTS train-clean-360 split.
-
Modify
channel_size
ingen
to switch between UnivNet-c16 and c32.gen: noise_dim: 64 channel_size: 32 # 32 or 16 dilations: [1, 3, 9, 27] strides: [8, 8, 4] lReLU_slope: 0.2
Training
python trainer.py -c CONFIG_YAML_FILE -n NAME_OF_THE_RUN
Tensorboard
tensorboard --logdir logs/
If you are running tensorboard on a remote machine, you can open the tensorboard page by adding --bind_all
option.
Inference
python inference.py -p CHECKPOINT_PATH -i INPUT_MEL_PATH -o OUTPUT_WAV_PATH
Pre-trained Model
You can download the pre-trained models from the Google Drive link below. The models were trained on LibriTTS train-clean-360 split.
- UnivNet-c16: Google Drive
- UnivNet-c32: Google Drive
Results
See audio samples at https://mindslab-ai.github.io/univnet/
We evaluated our model with validation set.
Model | PESQ(β) | RMSE(β) | Model Size |
---|---|---|---|
HiFi-GAN v1 | 3.54 | 0.423 | 14.01M |
Official UnivNet-c16 | 3.59 | 0.337 | 4.00M |
Our UnivNet-c16 | 3.60 | 0.317 | 4.00M |
Official UnivNet-c32 | 3.70 | 0.316 | 14.86M |
Our UnivNet-c32 | 3.68 | 0.304 | 14.87M |
The loss graphs of UnivNet are listed below.
The orange and blue graphs indicate c16 and c32, respectively.
Implementation Authors
Implementation authors are:
- Kang-wook Kim @ MINDsLab Inc. ([email protected], [email protected])
- Wonbin Jung @ MINDsLab Inc. ([email protected], [email protected])
Contributors are:
Special thanks to
License
This code is licensed under BSD 3-Clause License.
We referred following codes and repositories.
- The overall structure of the repository is based on https://github.com/seungwonpark/melgan.
- datasets/dataloader.py from https://github.com/NVIDIA/waveglow (BSD 3-Clause License)
- model/mpd.py from https://github.com/jik876/hifi-gan (MIT License)
- model/lvcnet.py from https://github.com/zceng/LVCNet (Apache License 2.0)
- utils/stft_loss.py # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT)
References
Papers
- Jang et al., UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
- Zeng et al., LVCNet: Efficient Condition-Dependent Modeling Network for Waveform Generation
- Kong et al., HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
Datasets