• Stars
    star
    164
  • Rank 230,032 (Top 5 %)
  • Language
    Python
  • Created about 7 years ago
  • Updated almost 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop)

pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge by Teney et al.

Model architecture

Prerequisites

Data

Preparation

  • To download and extract vqav2, glove, and pretrained visual features:
    bash scripts/download_extract.sh
  • To prepare data for training:
    python scripts/preproc.py
  • The structure of data/ directory should look like this:
    - data/
      - zips/
        - v2_XXX...zip
        - ...
        - glove...zip
        - trainval_36.zip
      - glove/
        - glove...txt
        - ...
      - v2_XXX.json
      - ...
      - trainval_resnet...tsv
      (The above are files created after executing scripts/download_extract.sh)
      - tokenizers/
        - ...
      - dict_ans.pkl
      - dict_q.pkl
      - glove_pretrained_300.npy
      - train_qa.pkl
      - val_qa.pkl
      - train_vfeats.pkl
      - val_vfeats.pkl
      (The above are files created after executing scripts/preproc.py)
    

Train

Use default parameters:

bash scripts/train.sh

Notes

  • Huge re-factor (especially data preprocessing), tested based on pytorch 0.4.1 and python 3.6
  • Training for 20 epochs reach around 50% training accuracy. (model seems buggy in my implementation)
  • After all the preprocessing, data/ directory may be up to 38G+
  • Some of preproc.py and utils.py are based on this repo

Resources