• Stars
    star
    113
  • Rank 310,115 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch Implementation of OpenAI GPT

OpenAI GPT

LICENSE GitHub issues GitHub stars GitHub forks

PyTorch Implementation of OpenAI GPT

Quick Start

0. Install dependencies

PreNLP is Preprocessing Library for Natural Language Processing. It provides sentencepiece tokenizer.

$ pip install prenlp
$ git clone https://github.com/LiyuanLucasLiu/RAdam
$ python RAdam/setup.py install

1. Setup input pipeline

Building vocab based on your corpus

$ python vocab.py --corpus <YOUR_CORPUS> --prefix <VOCAB_NAME> --vocab_size <YOUR_VOCAB_SIZE>

or you can download WikiText-103 corpus using below command, and build vocab based on this.

$ python -c "import prenlp; prenlp.data.WikiText103()"
$ ls .data/wikitext-103
wiki.test  wiki.train  wiki.valid
$ python vocab.py --corpus .data/wikitext-103/wiki.train --prefix wiki103

2. Unsupervised pre-training

$ python main.py --train_corpus <TRAIN_CORPUS> --vocab_file <VOCAB_FILE> --pretrained_sp_model <PRETRAINED_SP_MODEL> --pretrain

Distributed training with torch.distributed (Recommended)

You can apply to both single-node(multi-GPU) and multi-node distributed training.

$ python -m torch.distributed.launch --nproc_per_node=<NPROC_PER_NODE> --nnodes=<NNODES> --node_rank=<NODE_RANK> --master_addr=<MASTER_ADDR> --master_port=<MASTER_PORT> main.py --train_corpus <TRAIN_CORPUS> \
                                    --vocab_file <VOCAB_FILE> \
                                    --pretrained_sp_model <PRETRAINED_SP_MODEL> \
                                    --pretrain --distributed

3. Supervised fine-tuning

$ python main.py --train_corpus <TRAIN_CORPUS> --test_corpus <TEST_CORPUS>  --vocab_file <VOCAB_FILE> --pretrained_sp_model <PRETRAINED_SP_MODEL> --pretrained_model <PRETRAINED_MODEL> --finetune --do_eval

Distributed training with torch.distributed (Recommended)

You can apply to both single-node(multi-GPU) and multi-node distributed training.

$ python -m torch.distributed.launch --nproc_per_node=<NPROC_PER_NODE> --nnodes=<NNODES> --node_rank=<NODE_RANK> --master_addr=<MASTER_ADDR> --master_port=<MASTER_PORT> main.py --train_corpus <TRAIN_CORPUS> --test_corpus <TEST_CORPUS> \
                                    --vocab_file <VOCAB_FILE> \
                                    --pretrained_sp_model <PRETRAINED_SP_MODEL> \
                                    --pretrained_model <PRETRAINED_MODEL> \
                                    --finetune --do_eval --distributed

Questions and Discussions

Does auxiliary objective function have a bigger impact?

GPT authors mentioned that "We additionally found that including language modeling as an auxiliary objective to the fine-tuninghelped learning by (a) improving generalization of the supervised model, and (b) accelerating convergence".

And, in our experiments on IMDb dataset, it shows that the auxiliary objective function improves test-accuracy as shown below. The orange line is for auxiliary weight = 0, blue line is for auxiliary weight = 0.25, red line is for auxiliary weight = 0.5. And you can also see training logs for this in here.


List of options

You may need to change below argument parameters.

$ python main.py -h
usage: main.py [-h] --train_corpus TRAIN_CORPUS --vocab_file VOCAB_FILE
               --pretrained_sp_model PRETRAINED_SP_MODEL [--pretrain]
               [--finetune] [--do_eval] [--test_corpus TEST_CORPUS]
               [--pretrained_model PRETRAINED_MODEL]
               [--output_model_prefix OUTPUT_MODEL_PREFIX]
               [--batch_size BATCH_SIZE] [--max_seq_len MAX_SEQ_LEN]
               [--n_workers N_WORKERS] [--epochs EPOCHS] [--lr LR]
               [--auxiliary_ratio AUXILIARY_RATIO] [--local_rank LOCAL_RANK]
               [--no_cuda] [--distributed] [--hidden HIDDEN]
               [--n_layers N_LAYERS] [--n_attn_heads N_ATTN_HEADS]
               [--embd_dropout EMBD_DROPOUT] [--resid_dropout RESID_DROPOUT]
               [--attn_dropout ATTN_DROPOUT] [--ffn_hidden FFN_HIDDEN]
               [--cached_label_dict CACHED_LABEL_DICT]

optional arguments:
  -h, --help            show this help message and exit
  --train_corpus TRAIN_CORPUS
                        corpus for either pre-train or fine-tune
  --vocab_file VOCAB_FILE
                        pretrained vocabulary
  --pretrained_sp_model PRETRAINED_SP_MODEL
                        pretrained sentencepiece model
  --pretrain
  --finetune
  --do_eval
  --test_corpus TEST_CORPUS
                        corpus for either pre-train or fine-tune evaluation
  --pretrained_model PRETRAINED_MODEL
                        pretrained GPT model path
  --output_model_prefix OUTPUT_MODEL_PREFIX
                        output model name prefix
  --batch_size BATCH_SIZE
                        batch size
  --max_seq_len MAX_SEQ_LEN
                        the maximum size of the input sequence
  --n_workers N_WORKERS
                        the number of workers
  --epochs EPOCHS       the number of epochs
  --lr LR               initial learning rate
  --auxiliary_ratio AUXILIARY_RATIO
                        weight of auxiliary objective
  --local_rank LOCAL_RANK
                        node rank for distributed training
  --no_cuda
  --distributed
  --hidden HIDDEN       the number of expected features in the transformer
                        decoder
  --n_layers N_LAYERS   the number of decoder layers
  --n_attn_heads N_ATTN_HEADS
                        the number of multi-head attention heads
  --embd_dropout EMBD_DROPOUT
                        embedding dropout value
  --resid_dropout RESID_DROPOUT
                        residual dropout value
  --attn_dropout ATTN_DROPOUT
                        attention dropout value
  --ffn_hidden FFN_HIDDEN
                        dimension of the feedforward network
  --cached_label_dict CACHED_LABEL_DICT

References