• Stars
    star
    1,500
  • Rank 31,279 (Top 0.7 %)
  • Language
    Jupyter Notebook
  • Created almost 6 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Mathematical derivation and pure Python code implementation of machine learning algorithms.

机器学习 公式推导与代码实现

李航老师的《统计学习方法》和周志华老师的西瓜书《机器学习》一直国内机器学习领域的经典教材。本书在这两本书理论框架的基础上,补充了必要的代码实现思路和逻辑过程。

本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型4个大类26个经典算法进行了相对完整的公式推导和必要的代码实现,旨在帮助机器学习入门读者完整地掌握算法细节、实现方法以及内在逻辑。本书可作为《统计学习方法》和西瓜书《机器学习》的补充材料。


使用说明

本仓库为《机器学习 公式推导与代码实现》一书配套代码库,相较于书中代码而言,仓库代码随时保持更新和迭代。目前仓库只开源了全书的代码,全书内容后续也会在仓库中开源。本仓库已经根据书中章节将代码分目录整理好,读者可直接点击相关章节使用该章节代码。


纸质版


购买链接:京东 | 当当


配套PPT

为方便大家更好的使用本书,本书也配套了随书的PPT,购买过纸质书的读者可以在机器学习实验室公众号联系作者获取。


第1章示例


第2章示例


第7章示例


第12章示例


第23章示例

配套视频讲解(更新中)

为了帮助广大读者更好地学习和掌握机器学习的一般理论和方法,笔者在PPT基础上同时在为全书配套讲解视频。包括模型的公式手推和代码的讲解。

第一章:机器学习入门


全书勘误表

勘误表:勘误表


LICENSE

本项目采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。