Caffe-DeepBinaryCode
Supervised Learning of Semantics-Preserving Deep Hashing (SSDH)
Created by Kevin Lin, Huei-Fang Yang, and Chu-Song Chen at Academia Sinica, Taipei, Taiwan.
Introduction
This paper presents a simple yet effective supervised deep hash approach that constructs binary hash codes from labeled data for large-scale image search. We assume that the semantic labels are governed by several latent attributes with each attribute on or off, and classification relies on these attributes. Based on this assumption, our approach, dubbed supervised semantics-preserving deep hashing (SSDH), constructs hash functions as a latent layer in a deep network and the binary codes are learned by minimizing an objective function defined over classification error and other desirable hash codes properties. With this design, SSDH has a nice characteristic that classification and retrieval are unified in a single learning model. Moreover, SSDH performs joint learning of image representations, hash codes, and classification in a point-wised manner, and thus is scalable to large-scale datasets. SSDH is simple and can be realized by a slight enhancement of an existing deep architecture for classification; yet it is effective and outperforms other hashing approaches on several benchmarks and large datasets. Compared with state-of-the-art approaches, SSDH achieves higher retrieval accuracy, while the classification performance is not sacrificed.
The TPAMI pre-print can be found in the following arXiv preprint. Presentation slide can be found here
Citing the deep hashing work
If you find our work useful in your research, please consider citing:
Supervised Learning of Semantics-Preserving Hash via Deep Convolutional Neural Networks
Huei-Fang Yang, Kevin Lin, Chu-Song Chen
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017
Supervised Learning of Semantics-Preserving Hashing via Deep Neural Networks for Large-Scale Image Search
Huei-Fang Yang, Kevin Lin, Chu-Song Chen
arXiv preprint arXiv:1507.00101
Prerequisites
- MATLAB (tested with 2012b on 64-bit Linux)
- Caffe's prerequisites
Install Caffe-DeepBinaryCode
Adjust Makefile.config and simply run the following commands:
$ make all -j8
$ make test -j8
$ make matcaffe
$ ./prepare.sh
For a faster build, compile in parallel by doing make all -j8
where 8 is the number of parallel threads for compilation (a good choice for the number of threads is the number of cores in your machine).
Demo
Launch matlab and run demo.m
. This demo will generate 48-bits binary codes for each image using the proposed SSDH.
>> demo
Retrieval evaluation on CIFAR10
Launch matalb and run run_cifar10.m
to perform the evaluation of precision at k
and mean average precision (mAP) at k
. In this CIFAR10 demo, we employ all the test images (10,000
images) as the query set, and we select all the training images (50,000
images) to form the database (In the paper, only 1,000
test images are used as the query to comply with the settings in other methods). We computed mAP based on the entire retrieval list, thus we set k = 50,000
in this experiment. The bit length of binary codes is 48
. This process takes around 12 minutes.
>> run_cifar10
Then, you will get the mAP
result as follows.
>> MAP = 0.913361
Moreover, simply run the following commands to generate the precision at k
curves:
$ cd analysis
$ gnuplot plot-p-at-k.gnuplot
You will reproduce the precision curves with respect to different number of top retrieved samples when the 48-bit hash codes are used in the evaluation.
Train SSDH on CIFAR10
Simply run the following command to train SSDH:
$ cd /examples/SSDH
$ ./train.sh
After 50,000 iterations, the top-1 error rate is around 10% on the test set of CIFAR10 dataset:
I1221 16:27:44.764175 2985 solver.cpp:326] Iteration 50000, loss = -0.10567
I1221 16:27:44.764205 2985 solver.cpp:346] Iteration 50000, Testing net (#0)
I1221 16:27:58.907842 2985 solver.cpp:414] Test net output #0: accuracy = 0.8989
I1221 16:27:58.907877 2985 solver.cpp:414] Test net output #1: loss: 50%-fire-rate = 0.000621793 (* 1 = 0.000621793 loss)
I1221 16:27:58.907886 2985 solver.cpp:414] Test net output #2: loss: classfication-error = 0.369317 (* 1 = 0.369317 loss)
I1221 16:27:58.907892 2985 solver.cpp:414] Test net output #3: loss: forcing-binary = -0.114405 (* 1 = -0.114405 loss)
I1221 16:27:58.907897 2985 solver.cpp:331] Optimization Done.
I1221 16:27:58.907902 2985 caffe.cpp:214] Optimization Done.
The training process takes roughly 2~3 hours on a desktop with Titian X GPU. You will finally get your model named SSDH48_iter_xxxxxx.caffemodel
under folder /examples/SSDH/
To use the model, modify the model_file
in demo.m
to link to your model:
model_file = './YOUR/MODEL/PATH/filename.caffemodel';
Launch matlab, run demo.m
and enjoy!
>> demo
Train SSDH on another dataset
It should be easy to train the model using another dataset as long as that dataset has label annotations.
- Convert your training/test set into leveldb/lmdb format using
create_imagenet.sh
. - Modify the
source
in/example/SSDH/train_val.prototxt
to link to your training/test set. - Run
./examples/SSDH/train.sh
, and start training on your dataset.
Resources
Note: This documentation may contain links to third party websites, which are provided for your convenience only. Third party websites may be subject to the third party’s terms, conditions, and privacy statements.
If ./prepare.sh
fails to download data, you may manually download the resouces from:
FAQ
Q: I have followed the instructions in README, and ran the evaluation code. As shown in README that I will get the mAP around 90%
, however, I can only get about 10%
mAP. Could you please give me some suggestions?
A: You may have this problem if you didn’t launch matlab at caffe's root folder, which will automatically include important folders into PATH.
Two ways to solve this problem: First, run startup.m
before you run run_cifar10.m
. Second, open ./matlab/feat_batch.m
and change line 36 d = load('./matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');
to d = load('THE-PATH-OF-THIS-REPO-IN-YOU-COMPUTER/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');
. Then run run_cifar10.m
.
Contact
Please feel free to leave suggestions or comments to Kevin Lin ([email protected]), Huei-Fang Yang ([email protected]) or Chu-Song Chen ([email protected])