• Stars
    star
    16
  • Rank 1,311,288 (Top 26 %)
  • Language
    Groovy
  • License
    Apache License 2.0
  • Created almost 11 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A groovy/java tabular Data (from CSV,SQL,JSON) processing library that supports fuzzy column matching,tranformations/merging/querying

FuzzyCSV is a simple light weight groovy data processing library to help you merge/append/query/ or manipulate CSV files or any tabular data.

Maven Central

There are two jars available one compatible with groovy3 and lower and another compatible with groovy4

If using groovy3 and lower then use:

implementation 'io.github.kayr:fuzzy-csv:1.9.1-groovy3'

If using groovy 4 then use

implementation 'io.github.kayr:fuzzy-csv:1.9.1-groovy4'

Java CI

Use Cases

FuzzyCSV is a lightweigt groovy data processing library that helps in shaping and cleaning your dataset before its consumed by another service.

Table of Contents

Dependency

From Maven Central Maven Central

<dependency>
     <groupId>io.github.kayr</groupId>
     <artifactId>fuzzy-csv</artifactId>
     <version>${version}</version>
</dependency>

Gradle

compile 'io.github.kayr:fuzzy-csv:${version}'

Jitpack (For unpublished artifacts)

If you want to get a version that is not yest published to maven central then you can use JITPACK Release (https://jitpack.io/#kayr/fuzzy-csv) notice that the io.github.kayr is repleaced with com.github.kayr.

compile 'com.github.kayr:fuzzy-csv:${version}'`
<!-- Coordinate from JITPACK-->
<dependency>
     <groupId>com.github.kayr</groupId>
     <artifactId>fuzzy-csv</artifactId>
     <version>${version}</version>
</dependency>

<!-- Repository -->
<repositories>
    <repository>
      <id>jitpack.io</id>
      <url>https://jitpack.io</url>
    </repository>
</repositories>

Examples of Real World Applications

Visit the following page to view examples of how to use fuzzyCSV for real world applications.

http://kayr.github.io/fuzzy-csv/fuzzy-csv-examples.html

Features

  • Merging using Fuzzy Matching with the help of the SecondString project(useful when you have misspelled column names in the different CSV files)
  • Inner Join
  • Right Join
  • Left join
  • Full Join
  • Record functions
  • Transposing
  • Grouping
  • Sum and Count Aggregate functions
  • Lenient arithmetic operations i.e strings are coerced to numbers
  • Pivoting
  • and some extra utilities

Illustrations:

Using the following as examples:

Loading data into fuzzyCSV

FuzzyCSVTable.fromResultSet(sqlResultSet)
FuzzyCSVTable.fromSqlQuery(groovySql, "select * from table")
FuzzyCSVTable.fromListList(listMap)
FuzzyCSVTable.fromMapList(listOfLists)
FuzzyCSVTable.fromJsonText('''[["colum"],["value1"]]''')
//parse
FuzzyCSVTable.fromCsvString(csvString)
FuzzyCSVTable.fromCsvReader(reader)
//if you wish to customise the parsing you can provide more options
FuzzyCSVTable.fromCsvString(csvString, separator/* , */, quoteChar /* " */, escapeChar /* \ */)

Visualize json data in a console grid table

Given the following json:

{
  "id": "0001",
  "type": "donut",
  "name": "Cake",
  "ppu": 0.55,
  "batters":
    {
      "batter":
        [
          { "id": "1001", "type": "Regular" },
          { "id": "1002", "type": "Chocolate","color": "Brown" }
        ]
    },
  "topping":
    [
      { "id": "5001", "type": "None" },
      { "id": "5002", "type": "Glazed" },
      { "id": "5005", "type": "Sugar" ,"color": "Brown"}
    ]
}

Convert the above to a grid like this FuzzyCSVTable.fromJsonText(r).asListGrid().printTable()

╔═════════╀═══════════════════════════════════════════╗
β•‘ key     β”‚ value                                     β•‘
╠═════════β•ͺ═══════════════════════════════════════════╣
β•‘ batters β”‚ ╔════════╀══════════════════════════════╗ β•‘
β•‘         β”‚ β•‘ key    β”‚ value                        β•‘ β•‘
β•‘         β”‚ ╠════════β•ͺ══════════════════════════════╣ β•‘
β•‘         β”‚ β•‘ batter β”‚ ╔══════╀═══════════╀═══════╗ β•‘ β•‘
β•‘         β”‚ β•‘        β”‚ β•‘ id   β”‚ type      β”‚ color β•‘ β•‘ β•‘
β•‘         β”‚ β•‘        β”‚ ╠══════β•ͺ═══════════β•ͺ═══════╣ β•‘ β•‘
β•‘         β”‚ β•‘        β”‚ β•‘ 1001 β”‚ Regular   β”‚ -     β•‘ β•‘ β•‘
β•‘         β”‚ β•‘        β”‚ β•Ÿβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β•’ β•‘ β•‘
β•‘         β”‚ β•‘        β”‚ β•‘ 1002 β”‚ Chocolate β”‚ Brown β•‘ β•‘ β•‘
β•‘         β”‚ β•‘        β”‚ β•šβ•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β• β•‘ β•‘
β•‘         β”‚ β•šβ•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β• β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ id      β”‚ 0001                                      β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ name    β”‚ Cake                                      β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ ppu     β”‚ 0.55                                      β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ topping β”‚ ╔══════╀════════╀═══════╗                 β•‘
β•‘         β”‚ β•‘ id   β”‚ type   β”‚ color β•‘                 β•‘
β•‘         β”‚ ╠══════β•ͺ════════β•ͺ═══════╣                 β•‘
β•‘         β”‚ β•‘ 5001 β”‚ None   β”‚ -     β•‘                 β•‘
β•‘         β”‚ β•Ÿβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β•’                 β•‘
β•‘         β”‚ β•‘ 5002 β”‚ Glazed β”‚ -     β•‘                 β•‘
β•‘         β”‚ β•Ÿβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β•’                 β•‘
β•‘         β”‚ β•‘ 5005 β”‚ Sugar  β”‚ Brown β•‘                 β•‘
β•‘         β”‚ β•šβ•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•                 β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ type    β”‚ donut                                     β•‘
β•šβ•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

Merging with a fuzzy match

  1. Set the accuracy threshold to 75%
  2. Merge using code below
import static fuzzycsv.FuzzyCSVTable.tbl

def csv1 = [
        ['first name', 'sex'],
        ['alex', 'male'],
        ['sara', 'female']
]

def csv2 = [
        ['ferts nama', 'age', 'sex'],
        ['alex', '21', 'male'],
        ['peter', '21', 'male']
]

FuzzyCSV.ACCURACY_THRESHOLD.set(0.75) //set accuracy threshold
tbl(csv1).mergeByColumn(csv2).printTable()

This will output (Notice how it merged [first name] and [ferts nama])

  first name   sex      age  
  ----------   ---      ---  
  alex         male     -    
  sara         female   -    
  alex         male     21   
  peter        male     21   
_________
4 Rows

Joins

For now joins do not use fuzzy matching simply because in my use case it was not necessary

package fuzzycsv

import static fuzzycsv.FuzzyCSVTable.tbl
import static fuzzycsv.RecordFx.fn

def csv1 = [
        ['name', 'sex'],
        ['alex', 'male'],
        ['sara', 'female']
]

def csv2 = [
        ['name', 'age','hobby'],
        ['alex', '21','biking'],
        ['peter', '21','swimming']
]

Inner join

def csv = tbl(csv1).join(csv2, 'name')
println csv
/*output
[name, sex, age, hobby]
[alex, male, 21, biking]*/

Left join

csv = tbl(csv1).leftJoin(csv2, 'name')
println csv
/*output
[name, sex, age, hobby]
[alex, male, 21, biking]
[sara, female, null, null]*/

Right join

csv = tbl(csv1).rightJoin(csv2, 'name')
println csv
/*output
[name, sex, age, hobby]
[alex, male, 21, biking]
[peter, null, 21, swimming]*/

Full join

csv = tbl(csv1).fullJoin(csv2, 'name')
println csv
/*output
[name, sex, age, hobby]
[alex, male, 21, biking]
[sara, female, null, null]
[peter, null, 21, swimming]*/

Join with custom functions

def csv = tbl(csv1).fullJoin(csv2){it.left('name') == it.right('name')}
println csv.toStringFormatted()
/*output
  name    sex      name    age   hobby
  ----    ---      ----    ---   -----
  alex    male     alex    21    biking
  sara    female   sara    -     -
  peter   -        peter   21    swimming
_________
3 Rows
*/

Record functions:

These Help you write expression or functions for a record. E.g A function multiplying price by quantity. The record function run in two modes:

  • One with type coercion which can be created usingRecordFx.fn{}.This mode is lenient and does not throw most exceptions. This mode supports division of nulls(null/2), zero(2/0) division and type coercion("2"/2 or Object/null) . This mode adds extra overhead and is much slower if your are dealing with lots of records.
  • Another mode is RecordFx.fx{} which uses the default groovy evaluator. This mode is much faster if you are working with lots of records. However this mode is not lenient and hence can throw java.lang.ArithmeticException: Division by zero. If you want to enable leniency but still want to use the faster RecordFx.fx{} you can wrap your code in the fuzzycsv.FxExtensions category(e.g use(FxExtensions){ ...code here.. }) So the category is registered only once as compared to the former where the category is reqistered on each and every evaluation.

Doing a Select with a calculated field

import static fuzzycsv.FuzzyStaticApi.*

def csv2 = [
        ['price', 'quantity'],
        ['2', '40'],
        ['3', '20']
]

tbl(csv2).select('price',
                 'quantity',
                 fn('total') { it.price * it.quantity })
         .printTable()

/* output
  price   quantity   total  
  -----   --------   -----  
  2       40         80     
  3       20         60     
_________
2 Rows

 */

Consider we have the following csv

def csv2 = [
        ['name', 'age','hobby'],
        ['alex', '21','biking'],
        ['peter', '21','swimming']
]

Iterating over records/tables

tbl(csv).each{println(r.name)}
/*output
alex
peter*/

Get Cell Value

println tbl(csv2)['name'][2]
//output
peter

Delete Column

import static fuzzycsv.FuzzyStaticApi.*

def csv2 = [
        ['name', 'age','hobby'],
        ['alex', '21','biking'],
        ['peter', '21','swimming']
]


tbl(csv2).delete('name','age').printTable()

/* output
  hobby     
  -----     
  biking    
  swimming  
_________
2 Rows
 */

CSV To MapList

println tbl(csv2).toMapList()
/*output
[[name:alex, age:21, hobby:biking], [name:peter, age:21, hobby:swimming]]
*/

Map Table To POJO

import static fuzzycsv.FuzzyCSVTable.tbl
class Person{
  Sting name
  Integer age
  String hobby
}
List<Person> people = tbl(csv2).toPojoList(Person.class)

Sql To CSV

FuzzyCSVTable.toCSV(groovySql,"select * from PERSON")
//or
FuzzyCSVTable.toCSV(reCSVsultSet)

Add Column

import static fuzzycsv.FuzzyStaticApi.*

def csv2 = [
        ['name', 'age', 'hobby'],
        ['alex', '21', 'biking'],
        ['peter', '21', 'swimming']
]


tbl(csv2).addColumn(fn('Double Age') { it.age * 2 }).printTable()

/*output
  name    age   hobby      Double Age  
  ----    ---   -----      ----------  
  alex    21    biking     42          
  peter   21    swimming   42          
_________
2 Rows

 */

Filter Records

tbl(csv2).filter { it.name == 'alex' }.printTable()

/*output
  name   age   hobby   
  ----   ---   -----   
  alex   21    biking  
_________
1 Rows
 */

Delete rows

import static fuzzycsv.FuzzyStaticApi.tbl

def csv = [
        ['name', 'age', 'hobby', 'category'],
        ['alex', '21', 'biking', 'A'],
        ['peter', '21', 'swimming', 'S'],
        ['charles', '21', 'swimming', 'S'],
        ['barbara', '23', 'swimming', 'S']
]

tbl(csv).delete {it.age == '21'}.printTable()

/*
╔═════════╀═════╀══════════╀══════════╗
β•‘ name    β”‚ age β”‚ hobby    β”‚ category β•‘
╠═════════β•ͺ═════β•ͺ══════════β•ͺ══════════╣
β•‘ barbara β”‚ 23  β”‚ swimming β”‚ S        β•‘
β•šβ•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•
 */

Distinct by column

import static fuzzycsv.FuzzyStaticApi.tbl

def csv = [
        ['name', 'age', 'hobby', 'category'],
        ['alex', '21', 'biking', 'A'],
        ['peter', '21', 'swimming', 'S'],
        ['charles', '21', 'swimming', 'S'],
        ['barbara', '23', 'swimming', 'S']
]

tbl(csv).distinctBy('age','category').printTable()

/*
╔═════════╀═════╀══════════╀══════════╗
β•‘ name    β”‚ age β”‚ hobby    β”‚ category β•‘
╠═════════β•ͺ═════β•ͺ══════════β•ͺ══════════╣
β•‘ alex    β”‚ 21  β”‚ biking   β”‚ A        β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ peter   β”‚ 21  β”‚ swimming β”‚ S        β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ barbara β”‚ 23  β”‚ swimming β”‚ S        β•‘
β•šβ•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•
 */

Adding records

def t = '''[["name","number"],["john",1.1]]'''

def c = FuzzyCSVTable.fromJsonText(t)

c.addRecordArr("JB", 455)
        .addRecord(["JLis", 767])
        .addRecordMap([name: "MName", number: 90])
        .addRecordArr()
        .addRecordMap([name: "MNameEmp"])
        .printTable()


/*
╔══════════╀════════╗
β•‘ name     β”‚ number β•‘
╠══════════β•ͺ════════╣
β•‘ john     β”‚ 1.1    β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ JB       β”‚ 455    β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ JLis     β”‚ 767    β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ MName    β”‚ 90     β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ -        β”‚ -      β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ MNameEmp β”‚ -      β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•
*/

Sorting

import static fuzzycsv.FuzzyCSVTable.tbl

def csv2 = [
        ['name', 'age','hobby'],
        ['alex', '21','biking'],
        ['martin', '40','swimming'],
        ['dan', '25','swimming'],
        ['peter', '21','swimming'],
]

tbl(csv2).sort('age','name').printTable()

//or sort using closure
tbl(csv2).sort{"$it.age $it.name"}.printTable()

/*Output for both
  name     age   hobby
  ----     ---   -----
  alex     21    biking
  peter    21    swimming
  dan      25    swimming
  martin   40    swimming
_________
4 Rows
 */

Ranges

Ranges help slice the csv record..e.g selecting last 2, top 2, 3rd to 2nd last record

import static fuzzycsv.FuzzyCSVTable.tbl

def table = tbl([
        ['name', 'age','hobby'],
        ['alex', '21','biking'],
        ['martin', '40','swimming'],
        ['dan', '25','swimming'],
        ['peter', '21','swimming'],
])

//top 2
table[1..2].printTable()

/*Output
  name     age   hobby
  ----     ---   -----
  alex     21    biking
  martin   40    swimming
_________
2 Rows
 */

//last 2
table[-1..-2].printTable()
/*
  name    age   hobby
  ----    ---   -----
  peter   21    swimming
  dan     25    swimming
_________
2 Rows
 */

Up and Down Navigation e.g (for running sum)

Example showing running sum

def csv = [["name", "age"],
           ["kay", 1],
           ["sa", 22],
           ["kay2", 1],
           ["ben", 10]]


           
//add running sum of age

tbl(csv).addColumn(fx("running_sum") { (it.up()?.running_sum ?: 0) + it.age }).printTable()
/*output
  name   age   running_sum  
  ----   ---   -----------  
  kay    1     1            
  sa     22    23           
  kay2   1     24           
  ben    10    34           
_________
4 Rows
*/
                   
                   

Or sum bottom value with current value

tbl(csv).addColumn(fx("bottom_up") { (it.down().age ?: 0) + it.age }).printTable()

/*output
  name   age   bottom_up  
  ----   ---   ---------  
  kay    1     23         
  sa     22    23         
  kay2   1     11         
  ben    10    10         
_________
4 Rows
 */

Update values with where clause

import static fuzzycsv.FuzzyStaticApi.*

def csv2 = [
        ['name', 'age', 'hobby'],
        ['alex', '21', 'biking'],
        ['martin', '40', 'swimming'],
        ['dan', '25', 'swimming'],
        ['peter', '21', 'swimming'],
]

tbl(csv2).modify {
    set {
        it.hobby = "running"
        it.age  = '900'
    }
    where {
        it.name in ['dan', 'alex']
    }
}.printTable()

/*Output for both
  name     age   hobby     
  ----     ---   -----     
  alex     900   running   
  martin   40    swimming  
  dan      900   running   
  peter    21    swimming  
_________
4 Rows
 */

Transform each cell record

import static fuzzycsv.FuzzyCSVTable.tbl

def table = tbl([
        ['name', 'age','hobby'],
        ['alex', '21','biking'],
        ['martin', '40','swimming'],
        ['dan', '25','swimming'],
        ['peter', '21','swimming'],
])

table.transform {it.padRight(10,'-')}.printTable()

/*
  name         age          hobby
  ----         ---          -----
  alex------   21--------   biking----
  martin----   40--------   swimming--
  dan-------   25--------   swimming--
  peter-----   21--------   swimming--
_________
4 Rows
*/

Transposing

tbl(csv2).transpose()
         .printTable()

/*output
  name    alex     peter     
  ----    ----     -----     
  age     21       21        
  hobby   biking   swimming  
_________
2 Rows
 */

Pivoting

import static fuzzycsv.FuzzyStaticApi.*

def csv2 = [
        ['name', 'age', 'hobby', 'category'],
        ['alex', '21', 'biking', 'A'],
        ['peter', '21', 'swimming', 'S'],
        ['charles', '21', 'swimming','S'],
        ['barbara', '23', 'swimming', 'S']
]

//name = Column To Become Header
//age = Column Needed in Cells
//id and hobby = Columns that uniquely identify a record/row
tbl(csv2).pivot('name', 'age', 'category', 'hobby')
         .printTable()
/*output
  category   hobby      alex   peter   charles   barbara  
  --------   -----      ----   -----   -------   -------  
  A          biking     21     -       -         -        
  S          swimming   -      21      21        23       
_________
2 Rows
*/

Simplistic Aggregations

In the example below we find the average age in each hobby by making use of sum count and group by functions

import static fuzzycsv.FuzzyStaticApi.*

def csv2 = [
        ['name', 'age', 'Hobby'],
        ['alex', '21', 'biking'],
        ['peter', '21', 'swimming'],
        ['davie', '15', 'swimming'],
        ['sam', '16', 'biking'],
]


tbl(csv2).summarize(

        'Hobby',

        sum('age').az('TT.Age'),

        count('name').az('TT.Count')
).printTable()
/*output
  Hobby      TT.Age   TT.Count
  -----      ------   --------
  biking     37       2
  swimming   36       2
_________
2 Rows
*/

Custom Aggregation

tbl(csv2).summarize(
        'Hobby',
        reduce { group -> group['age'] }.az('AgeList')
).printTable()
/*output
  Hobby      AgeList
  -----      -------
  biking     [21, 16]
  swimming   [21, 15]
_________
2 Rows

*/

Unwinding a column

This is kind can be used to unwind a coluwn which has nested listes

import static fuzzycsv.FuzzyStaticApi.*

def csv = [
        ['name',     'AgeList'  ],
        ['biking',   [21,16]    ],
        ['swimming', [21,15]    ]
]


tbl(csv).unwind('AgeList')
        .printTable()
        
/*output
  name       AgeList  
  ----       -------  
  biking     21       
  biking     16       
  swimming   21       
  swimming   15       
_________
4 Rows
*/

Spreading a column

Expand outwards a column which contains list items

import static fuzzycsv.FuzzyStaticApi.*

def csv = [
        ['name',     'AgeList'  ],
        ['biking',   [21,16]    ],
        ['swimming', [21,15]    ]
]

tbl(csv).spread('AgeList')
        .printTable()

/*
╔══════════╀═══════════╀═══════════╗
β•‘ name     β”‚ AgeList_1 β”‚ AgeList_2 β•‘
╠══════════β•ͺ═══════════β•ͺ═══════════╣
β•‘ biking   β”‚ 21        β”‚ 16        β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ swimming β”‚ 21        β”‚ 15        β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•
*/

Spread out a column with maps

import static fuzzycsv.FuzzyStaticApi.tbl

def csv = [
        ['name', 'Age'],
        ['biking', [age: 21, height: 16]],
        ['swimming', [age: 21, height: 15]]
]

tbl(csv).spread('Age')
        .printTable()

/*
╔══════════╀═════════╀════════════╗
β•‘ name     β”‚ Age_age β”‚ Age_height β•‘
╠══════════β•ͺ═════════β•ͺ════════════╣
β•‘ biking   β”‚ 21      β”‚ 16         β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ swimming β”‚ 21      β”‚ 15         β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•
 */

Spread with custom column names

import static fuzzycsv.FuzzyStaticApi.spreader
import static fuzzycsv.FuzzyStaticApi.tbl

def csv = [
        ['name', 'Age'],
        ['biking', [age: 21, height: 16]],
        ['swimming', [age: 21, height: 15]]
]

tbl(csv).spread(spreader("Age") { col, key -> "MyColName: $key" })
        .printTable()

/*
╔══════════╀═════════════╀════════════════╗
β•‘ name     β”‚ MyTest: age β”‚ MyTest: height β•‘
╠══════════β•ͺ═════════════β•ͺ════════════════╣
β•‘ biking   β”‚ 21          β”‚ 16             β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ swimming β”‚ 21          β”‚ 15             β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•
 */

Move column

import static fuzzycsv.FuzzyStaticApi.tbl

def csv = [
        ['name', 'age', 'hobby', 'category'],
        ['alex', '21', 'biking', 'A'],
        ['peter', '21', 'swimming', 'S'],
        ['charles', '21', 'swimming', 'S'],
        ['barbara', '23', 'swimming', 'S']
]
tbl(csv).moveCol("age", "category")
        .printTable()

/*
╔═════════╀══════════╀══════════╀═════╗
β•‘ name    β”‚ hobby    β”‚ category β”‚ age β•‘
╠═════════β•ͺ══════════β•ͺ══════════β•ͺ═════╣
β•‘ alex    β”‚ biking   β”‚ A        β”‚ 21  β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β•’
β•‘ peter   β”‚ swimming β”‚ S        β”‚ 21  β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β•’
β•‘ charles β”‚ swimming β”‚ S        β”‚ 21  β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β•’
β•‘ barbara β”‚ swimming β”‚ S        β”‚ 23  β•‘
β•šβ•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•
 */

Navigation

Navigators help move through the table cells easily. You can look above,below, right or left of a cell.

import fuzzycsv.nav.Navigator

import static fuzzycsv.FuzzyStaticApi.tbl

def csv = [
        ['name', 'age', 'hobby', 'category'],
        ['alex', '21', 'biking', 'A'],
        ['peter', '21', 'swimming', 'S'],
        ['charles', '21', 'swimming', 'S'],
        ['barbara', '23', 'swimming', 'S']
]

def navigator = new Navigator(0, 0, tbl(csv))


assert navigator.down().down().value() == 'peter'
assert navigator.right().value() == 'age'
assert navigator.right().left().value() == 'name'
assert navigator.down().up().value() == 'name'

// Move down
assert navigator.downIter().collect { it.value() } == ['name', 'alex', 'peter', 'charles', 'barbara']

// MoveRight
assert navigator.rightIter().collect { it.value() } == ['name', 'age', 'hobby', 'category']

//move through all
assert navigator.allIter().collect { it.value() } == ['name', 'age', 'hobby', 'category', 'alex', '21', 'biking', 'A', 'peter', '21', 'swimming',
                                                      'S', 'charles', '21', 'swimming', 'S', 'barbara', '23', 'swimming', 'S']
//move through all bounded
assert navigator.allBoundedIter(1, 2).collect { it.value() } == ['name', 'age', 'alex', '21', 'peter', '21']

//move up
assert new Navigator(0, 4, tbl(csv)).upIter().collect { it.value() } == ['barbara', 'charles', 'peter', 'alex', 'name']

Excel utility classes

To use the excel utilities you have to add the poi dependency to your classpath

If you are using gradle add this.

     compile 'org.apache.poi:poi-ooxml:3.16', {
         exclude group: 'stax', module: 'stax-api'
     }
     compile 'org.apache.poi:ooxml-schemas:1.3', {
         exclude group: 'stax', module: 'stax-api'
     }

After this you can use the Excel utilities to convert excel sheets to and from FuzzyCSVTables.

There are mainly two classes that help with this which include fuzzycsv.Excel2Csv and fuzzycsv.CSVToExcel

Note:

This library has not been tested with very large(700,000 records plus) CSV files. So performance might be a concern.

More example can be seen here

https://github.com/kayr/fuzzy-csv/blob/master/src/test/groovy/fuzzycsv/FuzzyCSVTest.groovy

and

https://github.com/kayr/fuzzy-csv/blob/master/src/test/groovy/fuzzycsv/FuzzyCSVTableTest.groovy