• Stars
    star
    143
  • Rank 257,007 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created over 13 years ago
  • Updated over 11 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Ready-in-minutes split-testing framework for App Engine, built for Khan Academy and inspired by A/Bingo

GAE/Bingo

GAE/Bingo is a drop-in split testing framework for App Engine, built for Khan Academy and heavily modeled after Patrick McKenzie's A/Bingo. If you're on App Engine, GAE/Bingo can get your A/B tests up and running in minutes.

You can read more about the initial inspiration and design of GAE/Bingo.

Features

Free features inherited quite directly from A/Bingo's design (imagine quotes around the following):

  • Test display or behavioral differences in one line of code.
  • Measure any event as a conversion in one line of code.
  • Eliminate guesswork: automatically test for statistical significance.
  • Blazingly fast, with minimal impact on page load times or server load.
  • Written by programmers, for programmers. Marketing is an engineering discipline!

Plus some stuff to satisfy Khan Academy's needs:

  • Drop into App Engine with minimal configuration
  • Framework agnostic -- works with webapp, Django, Flask, whatever.
  • Persistent storage of test results -- if you're running experiments that take a long time like, say, testing your software's effects on a student's education, that's no problem.
  • Performance optimized for App Engine
  • Easy-to-use Javascript API

Experiment Dashboard


Your dashboard, available at /gae_bingo/dashboard, lets you control all experiments and provides statistical analysis of results.

Bare Minimum Example

These two lines of code calling the ab_test and bingo functions are all you need to start A/B testing.

from gae_bingo.gae_bingo import ab_test, bingo

# Start an ab_test, returning True or False
use_new_button_design = ab_test("new button design"):

#...then, when ready to score a conversion...
bingo("new button design")

That's it! You're split-testing your users, with consistent behavior per-user, automatic statistical tracking, and more. If you want more power, read on.

Usage and Code Samples

Starting an experiment

This line of code will automatically set up an A/B test named "new button design" (the first time only) and return True or False. Use this anywhere you can run Python code, it's highly optimized.

from gae_bingo.gae_bingo import ab_test

...

if ab_test("new button design"):
    return "new_button_class"
else:
    return "old_button_class"

You can also specify an identifier for the conversion metric you're expecting to analyze.

if ab_test("crazy new type of animal", conversion_name="animals escaped"):
    return Gorillas()
else:
    return Monkeys()

If you don't specify a conversion_name when starting a test, GAE/Bingo will automatically listen for conversions with the same name as the experiment.

Scoring a conversion

This line of code will score a conversion in the "new button design" experiment for the current user.

from gae_bingo.gae_bingo import bingo

...
bingo("new button design")

...or, in the case of the above "crazy new type of animal" experiment,

bingo("animals escaped")

Specifying alternatives

Even though the above two lines are all you need to start running some pretty useful A/B tests, you've got more power than that. Choose from any of the following lines of code to return various alternatives for your tests. Remember: each individual user will get consistent results from these functions.

from gae_bingo.gae_bingo import ab_test

...

# SIMPLE
#
# Returns True or False
#
use_new_button_design = ab_test("new button design")

...

# LIST OF ALTERNATIVES
#
# Returns "old" or "shiny"
#
button_class = ab_test("new button class", ["old", "shiny"])

...

# LIST OF >2 ALTERNATIVES (multivariate testing)
#
# Returns 10, 15, or 20
#
answers_required = ab_test("answers required", [10, 15, 20])

...

# WEIGHTED ALTERNATIVES
# (use a dictionary with alternatives as keys and weights as values)
#
# Returns "crazy" to 1/5 of your users and "normal" to 4/5 of your users
#
crazy_experiment = ab_test("crazy experiment", {"crazy": 1, "normal": 4})

Analyzing multiple types of results for a single experiment

You may want to statistically examine different dimensions of an experiment's effects. You can do this by passing an array to the conversion_name parameter.

breed_new_animal = ab_test("breed new animal", conversion_name=["animals escaped", "talking animals"])

This syntactic sugar will automatically create multiple experiments for you. Your conversions will be tracked independently with their own statistical analysis, so you can independently call bingo() when appropriate:

bingo("animals escaped")

...and...

bingo("talking animals")

This lets you monitor your experiment's statistical effects on both escaping and talking animals, separately, via the dashboard.

Testing your alternatives ahead of time

If you're on the dev server and wanna take a look-see at how your various alternatives behave before you ship 'em, you can override the current request's selection of A/B alternatives by adding the gae_bingo_alternative_number request param, like so: ?gae_bingo_alternative_number=2

Controlling and ending your experiments

Typically, ending an experiment will go something like this:

  1. You'll check out your dashboard at /gae_bingo/dashboard
  2. You'll notice a clear experiment winner and click "End experiment, picking this" on the dashboard. All users will now see your chosen alternative.
  3. You'll go into the code and remove your old ab_test() call, replacing it w/ the clear winner.
  4. You'll delete the experiment from the dashboard if you no longer need its historical record.

Design Principles

Just go read through Patrick McKenzie's slides on A/B testing design principles. This implementation only tweaks those to achieve:

  • Persistence to datastore for very-long-lasting records and very-long-running experiments without sacrificing performance.
  • Quick to drop-in for any App Engine (Python) developer, with strong-but-customizable ties to existing App Engine user identities.

Getting Started

  1. Download this repository's source and copy the gae_bingo/ folder into your App Engine project's root directory.

  2. Add the following handler definitions (found in yaml/app.yaml) to your app's app.yaml:

handlers:
- url: /gae_bingo/static
  static_dir: gae_bingo/static<br/>
- url: /gae_bingo/tests/.*
  script: gae_bingo/tests/main.py<br/>
- url: /gae_bingo/.*
  script: gae_bingo/main.py

...and the following job definitions (found in yaml/cron.yaml) to your app's cron.yaml:

cron:
- description: persist gae bingo experiments to datastore
  url: /gae_bingo/persist
  schedule: every 5 minutes
  1. Modify the WSGI application you want to A/B test by wrapping it with the gae_bingo WSGI middleware:
# Example of existing application
application = webapp.WSGIApplication(...existing application...)<br/>
# Add the following
from gae_bingo.middleware import GAEBingoWSGIMiddleware
application = GAEBingoWSGIMiddleware(application)
  1. (Optional, suggested) If you want, use appengine_config.py to modify the contents of config.py to match your application's usage. The two most interesting functions to modify are can_control_experiments() and current_logged_in_identity()
# ...in appengine_config.py...
def gae_bingo_can_control_experiments():
    # Choose which users have access to the experiment dashboard.
    # This default implementation will be fine for most.
    return users.is_current_user_admin()
# ...in appengine_config.py...
def gae_bingo_current_logged_in_identity():
    # CUSTOMIZE current_logged_in_identity to make your a/b sessions
    # stickier and more persistent per user.
    #
    # This should return one of the following:
    #
    #   A) a db.Model that identifies the current user, like
    #      user_models.UserData.current()
    #   B) a unique string that consistently identifies the current user, like
    #      users.get_current_user().user_id()
    #   C) None, if your app has no way of identifying the current user for the
    #      current request. In this case gae_bingo will automatically use a random
    #      unique identifier.
    #
    # Ideally, this should be connected to your app's existing identity system.
    #
    # To get the strongest identity tracking even when switching from a random, not
    # logged-in user to a logged in user, return a model that inherits from
    # GaeBingoIdentityModel.  See docs for details.
    #
    # Examples:
    #   return user_models.UserData.current()
    #         ...or...
    #   from google.appengine.api import users
    #   user = users.get_current_user()
    #   return user.user_id() if user else None
    return users.get_current_user().user_id() if users.get_current_user() else None

If you want the most consistent A/B results for users who are anonymous and then proceed to login to your app, you should have this function return a db.Model that inherits from models.GaeBingoIdentityModel. Example: class UserData(GAEBingoIdentityModel, db.Model):
...GAE/Bingo will take care of the rest.

  1. You're all set! Start creating and converting A/B tests as described above.

Javascript API and Client-Side Bingo Parties

GAE/Bingo includes a client-side Javascript API that closely matches the backend calls. You can read more in static/js/gae_bingo.js but a brief walkthrough is provided here.

the gae_bingo variable is present on the dashboard page as window.gae_bingo or just plain gae_bingo. In either case, feel free to pop open a console and play around.

// assuming it exists, score a conversion
gae_bingo.bingo( "mario_yay" )

// supposing that the above conversion didn't exist, we can creat one if we're a site admin
// create a new a/b test split 90/10 with three possible conversions
gae_bingo.ab_test( "mario points", { "on" : 90, "off" : 10 }, [ "mario_yay", "mario_boo", "mario_indifferent" ] )

// check user's status in a test
gae_bingo.ab_test( "mario points", null, null, function( d ) { console.log( d ); } )

// see all tests requested so far
gae_bingo.tests
// ==> returns { "mario points" : "on" }

// you can specify default callbacks
gae_bingo.init({
  success : function( d, ts, jqx ) { console.log( "woo!", d ); },
  error : function( jqx, ts, e ) { console.error( "nuts", jqx )}
})

// if you're just playing around, there are some console-friendly defaults available
// which you can access by defining debug as an init parameter
gae_bingo.init( { "debug" : true } )

GAE/Bingo also includes two endpoints for interacting with GAE/Bingo client-side:

  • /gae_bingo/blotter/ab_test and also
  • /gae_bingo/blotter/bingo

Both endpoints you should POST to

/gae_bingo/blotter/ab_test

request user alternative/state for an experiment by passing { canonical_name : "experiment_name" }

successful requests return 200 and a json object { "experiment_name" : "state" } where state is a jsonified version of the user's state in the experiment

if a user can_control_experiments, requests may create experiments on the server similar to calling ab_test directly. You should pass in:

    { 
        "canonical_name": <string>,
        "alternative_params": <json_obj | json_list>,
        "conversion_name": <json_list>
    }

for the behavior of ab_test when passing interesting parameters, see gae_bingo.ab_test

  • Good requests return a 201 and the jsonified alternative of the user calling ab_test
  • Failed requests return 404 if the experiment is not found and
  • a 400 is returned if the params are passed incorrectly

/gae_bingo/blotter/bingo

post a conversion to gae_bingo by passing { convert : "conversion_name" }

you cannot currently pass a json list (as the response would be a bit ambiguous) so instead pass multiple calls to POST (which is what the js api does)

  • A successful conversions return HTTP 204
  • A failed conversions return a 404 (i.e. experiment not found in reverse-lookup)
  • No params returns a 400 error

Non-features (well, some of them)

In order to get v1 out the door, a number of features were cut. Please feel free to help us accomplish the following:

  • Multivariate statistical analysis -- currently we only automatically analyze experiments w/ exactly 2 alternatives.
  • Multiple participation in experiments -- currently each user is only counted once per experiment.
  • Nicer bot detection -- we took the cheap and quick route of checking user agents for bots even thought testing for javascript execution is much more effective. This shouldn't screw w/ your statistical analysis, conversions look rarer than they actually are due to bots getting through the filter.

Bonus

GAE/Bingo is currently in production use at Khan Academy. If you make good use of it elsewhere, be sure to let us know so we can brag about you to others ([email protected]).

FAQ

  1. Would you have been able to build any of this without A/Bingo's lead to follow?

    Nope.

  2. Shouldn't I just be using Google Website Optimizer or some other javascript-powered A/B testing framework?

    I'll let Patrick handle this one.

  3. How come you didn't just use one of the existing Python split testing frameworks like django-lean?

    django-lean is awesome, but we strongly believe in a couple of the core principles of A/Bingo, particularly making it as ridiculously easy as possible for developers (and anybody else) to create A/B tests. We couldn't find a framework that satisfied our needs, so we decided to spread the A/Bingo love.

    We also wanted this to quickly drop into any App Engine app, and we didn't want to exclude those on App Engine who aren't using Django.

  4. Can I use this framework for my iguana website?

    It's all yours. GAE/Bingo is MIT licensed.

  5. Did you design the dashboard template?

    Nope -- check out https://github.com/pilu/web-app-theme