• Stars
    star
    150
  • Rank 247,323 (Top 5 %)
  • Language
    Rust
  • License
    MIT License
  • Created over 2 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[WIP] A simple and ultrafast http reverse proxy serving multiple domain names and terminating TLS over http/1.1, 2 and 3, written in Rust

rpxy: A simple and ultrafast reverse-proxy serving multiple domain names with TLS termination, written in pure Rust

License: MIT Unit Test Docker ShiftLeft Scan Docker Image Size (latest by date)

WIP Project

Introduction

rpxy [ahr-pik-see] is an implementation of simple and lightweight reverse-proxy with some additional features. The implementation is based on hyper, rustls and tokio, i.e., written in pure Rust. Our rpxy routes multiple host names to appropriate backend application servers while serving TLS connections.

As default, rpxy provides the TLS connection sanitization by correctly binding a certificate used to establish a secure channel with the backend application. Specifically, it always keeps the consistency between the given SNI (server name indication) in ClientHello of the underlying TLS and the domain name given by the overlaid HTTP HOST header (or URL in Request line) 1. Additionally, as a somewhat unstable feature, our rpxy can handle the brand-new HTTP/3 connection thanks to quinn, s2n-quic and hyperium/h3.2

This project is still work-in-progress. But it is already working in some production environments and serves a number of domain names. Furthermore it significantly outperforms NGINX and Caddy, e.g., 1.5x faster than NGINX, in the setting of a very simple HTTP reverse-proxy scenario (See bench directory).

Installing/Building an Executable Binary of rpxy

You can build an executable binary yourself by checking out this Git repository.

# Cloning the git repository
% git clone https://github.com/junkurihara/rust-rpxy
% cd rust-rpxy

# Update submodules
% git submodule update --init

# Build (default: QUIC and HTTP/3 is enabled using `quinn`)
% cargo build --release

# If you want to use `s2n-quic`, build as follows. You may need several additional dependencies.
% cargo build --no-default-features --features http3-s2n --release

Then you have an executive binary rust-rpxy/target/release/rpxy.

Note that we do not have an option of installation via crates.io, i.e., cargo install, at this point since some dependencies are not published yet. Alternatively, you can use docker image (see below) as the easiest way for amd64 environment.

Usage

rpxy always refers to a configuration file in TOML format, e.g., config.toml. You can find an example of the configuration file, config-example.toml, in this repository.

You can run rpxy with a configuration file like

% ./target/release/rpxy --config config.toml

If you specify -w option along with the config file path, rpxy tracks the change of config.toml in the real-time manner and apply the change immediately without restarting the process.

The full help messages are given follows.

usage: rpxy [OPTIONS] --config <FILE>

Options:
  -c, --config <FILE>  Configuration file path like ./config.toml
  -w, --watch          Activate dynamic reloading of the config file via continuous monitoring
  -h, --help           Print help
  -V, --version        Print version

That's all!

Basic Configuration

First Step: Cleartext HTTP Reverse Proxy

The most basic configuration of config.toml is given like the following.

listen_port = 80

[apps.app1]
server_name = 'app1.example.com'
reverse_proxy = [{ upstream = [{ location = 'app1.local:8080' }] }]

In the above setting, rpxy listens on port 80 (TCP) and serves incoming cleartext HTTP request including a app1.example.com in its HOST header or URL in its Request line. For example, request messages like the followings.

GET http://app1.example.com/path/to HTTP/1.1\r\n

or

GET /path/to HTTP/1.1\r\n
HOST: app1.example.com\r\n

Otherwise, say, a request to other.example.com is simply rejected with the status code 40x.

If you want to host multiple and distinct domain names in a single IP address/port, simply create multiple app."<app_name>" entries in config file like

default_application = "app1"

[apps.app1]
server_name = "app1.example.com"
#...

[apps.app2]
server_name = "app2.example.org"
#...

Here we note that by specifying default_application entry, HTTP requests will be served by the specified application if HOST header or URL in Request line doesn't match any server_names in reverse_proxy entries. For HTTPS requests, it will be rejected since the secure connection cannot be established for the unknown server name.

HTTPS to Backend Application

The request message will be routed to the backend application specified with the domain name app1.localdomain:8080 or IP address over cleartext HTTP. If the backend channel needs to serve TLS like forwarding to https://app1.localdomain:8080, you need to enable a tls option for the location.

revese_proxy = [
  { location = 'app1.localdomain:8080', tls = true }
]

Load Balancing

You can specify multiple backend locations in the reverse_proxy array for load-balancing with an appropriate load_balance option. Currently it works in the manner of round-robin, in the random fashion, or round-robin with session-persistance using cookie. if load_balance is not specified, the first backend location is always chosen.

[apps."app_name"]
server_name = 'app1.example.com'
reverse_proxy = [
  { location = 'app1.local:8080' },
  { location = 'app2.local:8000' }
]
load_balance = 'round_robin' # or 'random' or 'sticky'

Second Step: Terminating TLS

First of all, you need to specify a port listen_port_tls listening the HTTPS traffic, separately from HTTP port (listen_port). Then, serving an HTTPS endpoint can be easily done for your desired application just by specifying TLS certificates and private keys in PEM files.

listen_port = 80
listen_port_tls = 443

[apps."app_name"]
server_name = 'app1.example.com'
tls = { tls_cert_path = 'server.crt',  tls_cert_key_path = 'server.key' }
reverse_proxy = [{ upstream = [{ location = 'app1.local:8080' }] }]

In the above setting, both cleartext HTTP requests to port 80 and ciphertext HTTPS requests to port 443 are routed to the backend app1.local:8080 in the same fashion. If you don't need to serve cleartext requests, just remove listen_port = 80 and specify only listen_port_tls = 443.

We should note that the private key specified by tls_cert_key_path must be in PKCS8 format. (See TIPS to convert PKCS1 formatted private key to PKCS8 one.)

Redirecting Cleartext HTTP Requests to HTTPS

In the current Web, we believe it is common to serve everything through HTTPS rather than HTTP, and hence https redirection is often used for HTTP requests. When you specify both listen_port and listen_port_tls, you can enable an option of such redirection by making https_redirection true.

tls = { https_redirection = true, tls_cert_path = 'server.crt', tls_cert_key_path = 'server.key' }

If it is true, rpxy returns the status code 301 to the cleartext request with new location https://<requested_host>/<requested_query_and_path> served over TLS.

Third Step: More Flexible Routing Based on URL Path

rpxy can serves, of course, routes requests to multiple backend destination according to the path information. The routing information can be specified for each application (server_name) as follows.

listen_port_tls = 443

[apps.app1]
server_name = 'app1.example.com'
tls = { https_redirection = true, tls_cert_path = 'server.crt', tls_cert_key_path = 'server.key' }

[[apps.app1.reverse_proxy]]
upstream = [
  { location = 'default.backend.local' }
]

[[apps.app1.reverse_proxy]]
path = '/path'
upstream = [
  { location = 'path.backend.local' }
]

[[apps.app1.reverse_proxy]]
path = '/path/another'
replace_path = '/path'
upstream = [
  { location = 'another.backend.local' }
]

In the above example, a request to https://app1.example.com/path/to?query=ok matches the second reverse_proxy entry in the longest-prefix-matching manner, and will be routed to path.backend.local with preserving path and query information, i.e., served as http://path.backend.local/path/to?query=ok.

On the other hand, a request to https://app1.example.com/path/another/xx?query=ng matching the third entry is routed with being rewritten its path information specified by replace_path option. Namely, the matched /path/another part is rewritten with /path, and it is served as http://another.backend.local/path/xx?query=ng.

Requests that doesn't match any paths will be routed by the first entry that doesn't have the path option, which means the default destination. In other words, unless every reverse_proxy entry has an explicit path option, rpxy rejects requests that don't match any paths.

Simple Path-based Routing

This path-based routing option would be enough in many cases. For example, you can serve multiple applications with one domain by specifying unique path to each application. More specifically, see an example below.

[apps.app]
server_name = 'app.example.com'
#...

[[apps.app.reverse_proxy]]
path = '/subapp1'
replace_path = '/'
upstream = [ { location = 'subapp1.local' } ]

[[apps.app.reverse_proxy]]
path = '/subapp2'
replace_path = '/'
upstream = [ { location = 'subapp2.local' } ]

[[apps.app.reverse_proxy]]
path = '/subapp3'
replace_path = '/'
upstream = [ { location = 'subapp3.local' } ]

This example configuration explains a very frequent situation of path-based routing. When a request to app.example.com/subappN routes to sbappN.local by replacing a path part /subappN to /.

More Options

Since it is currently a work-in-progress project, we are frequently adding new options. We first add new option entries in the config-example.toml as examples. So please refer to it for up-to-date options. We will prepare a comprehensive documentation for all options.

Using Docker Image

You can also use docker image hosted on Docker Hub and GitHub Container Registry instead of directly executing the binary. See ./docker/README.md for the differences on image tags.

There are only several docker-specific environment variables.

  • HOST_USER (default: user): User name executing rpxy inside the container.
  • HOST_UID (default: 900): UID of HOST_USER.
  • HOST_GID (default: 900): GID of HOST_USER
  • LOG_LEVEL=debug|info|warn|error: Log level
  • LOG_TO_FILE=true|false: Enable logging to the log file /rpxy/log/rpxy.log using logrotate. You should mount /rpxy/log via docker volume option if enabled. The log dir and file will be owned by the HOST_USER with HOST_UID:HOST_GID on the host machine. Hence, HOST_USER, HOST_UID and HOST_GID should be the same as ones of the user who executes the rpxy docker container on the host.
  • WATCH=true|false (default: false): Activate continuous watching of the config file if true.

Then, all you need is to mount your config.toml as /etc/rpxy.toml and certificates/private keys as you like through the docker volume option. If WATCH=true, You need to mount a directory, e.g., ./rpxy-config/, including rpxy.toml on /rpxy/config instead of a file to correctly track file changes. This is a docker limitation. Even if WATCH=false, you can mount the dir onto /rpxy/config rather than /etc/rpxy.toml. A file mounted on /etc/rpxy is prioritized over a dir mounted on /rpxy/config.

See docker/docker-compose.yml for the detailed configuration. Note that the file path of keys and certificates must be ones in your docker container.

Example

./bench directory could be a very simple example of configuration of rpxy. This can also be an example of an example of docker use case.

Experimental Features and Caveats

HTTP/3

rpxy can serves HTTP/3 requests thanks to quinn, s2n-quic and hyperium/h3. To enable this experimental feature, add an entry experimental.h3 in your config.toml like follows. Any values in the entry like alt_svc_max_age are optional.

[experimental.h3]
alt_svc_max_age = 3600
request_max_body_size = 65536
max_concurrent_connections = 10000
max_concurrent_bidistream = 100
max_concurrent_unistream = 100
max_idle_timeout = 10

Client Authentication via Client Certificates

Client authentication is enabled when apps."app_name".tls.client_ca_cert_path is set for the domain specified by "app_name" like

[apps.localhost]
server_name = 'localhost' # Domain name
tls = { https_redirection = true, tls_cert_path = './server.crt', tls_cert_key_path = './server.key', client_ca_cert_path = './client_cert.ca.crt' }

However, currently we have a limitation on HTTP/3 support for applications that enables client authentication. If an application is set with client authentication, HTTP/3 doesn't work for the application.

Hybrid Caching Feature with Temporary File and On-Memory Cache

If [experimental.cache] is specified in config.toml, you can leverage the local caching feature using temporary files and on-memory objects. An example configuration is as follows.

# If this specified, file cache feature is enabled
[experimental.cache]
cache_dir = './cache'                # optional. default is "./cache" relative to the current working directory
max_cache_entry = 1000               # optional. default is 1k
max_cache_each_size = 65535          # optional. default is 64k
max_cache_each_size_on_memory = 4096 # optional. default is 4k if 0, it is always file cache.

A storable (in the context of an HTTP message) response is stored if its size is less than or equal to max_cache_each_size in bytes. If it is also less than or equal to max_cache_each_size_on_memory, it is stored as an on-memory object. Otherwise, it is stored as a temporary file. Note that max_cache_each_size must be larger or equal to max_cache_each_size_on_memory. Also note that once rpxy restarts or the config is updated, the cache is totally eliminated not only from the on-memory table but also from the file system.

TIPS

Using Private Key Issued by Let's Encrypt

If you obtain certificates and private keys from Let's Encrypt, you have PKCS1-formatted private keys. So you need to convert such retrieved private keys into PKCS8 format to use in rpxy.

The easiest way is to use openssl by

% openssl pkcs8 -topk8 -nocrypt \
    -in yoru_domain_from_le.key \
    -inform PEM \
    -out your_domain_pkcs8.key.pem \
    -outform PEM

Client Authentication using Client Certificate Signed by Your Own Root CA

First, you need to prepare a CA certificate used to verify client certificate. If you do not have one, you can generate CA key and certificate by OpenSSL commands as follows. Note that rustls accepts X509v3 certificates and reject SHA-1, and that rpxy relys on Version 3 extension fields of KeyIDs of Subject Key Identifier and Authority Key Identifier.

  1. Generate CA key of secp256v1, CSR, and then generate CA certificate that will be set for tls.client_ca_cert_path for each server app in config.toml.
% openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:prime256v1 -out client.ca.key

% openssl req -new -key client.ca.key -out client.ca.csr
...
-----
Country Name (2 letter code) []: ...
State or Province Name (full name) []: ...
Locality Name (eg, city) []: ...
Organization Name (eg, company) []: ...
Organizational Unit Name (eg, section) []: ...
Common Name (eg, fully qualified host name) []: <Should not input CN>
Email Address []: ...

% openssl x509 -req -days 3650 -sha256 -in client.ca.csr -signkey client.ca.key -out client.ca.crt -extfile client.ca.ext
  1. Generate a client key of secp256v1 and certificate signed by CA key.
% openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:prime256v1 -out client.key

% openssl req -new -key client.key -out client.csr
...
-----
Country Name (2 letter code) []:
State or Province Name (full name) []:
Locality Name (eg, city) []:
Organization Name (eg, company) []:
Organizational Unit Name (eg, section) []:
Common Name (eg, fully qualified host name) []: <Should not input CN>
Email Address []:

% openssl x509 -req -days 365 -sha256 -in client.csr -CA client.ca.crt -CAkey client.ca.key -CAcreateserial -out client.crt -extfile client.ext

Now you have a client key client.key and certificate client.crt (version 3). pfx (p12) file can be retrieved as

% openssl pkcs12 -export -inkey client.key -in client.crt -certfile client.ca.crt -out client.pfx

Note that on MacOS, a pfx generated by OpenSSL 3.0.6 cannot be imported to MacOS KeyChain Access. We generated the sample pfx using LibreSSL 2.8.3 instead OpenSSL.

All of sample certificate files are found in ./example-certs/ directory.

(Work Around) Deployment on Ubuntu 22.04LTS using docker behind ufw

Basically, docker automatically manage your iptables if you use the port-mapping option, i.e., --publish for docker run or ports in docker-compose.yml. This means you do not need to manually expose your port, e.g., 443 TCP/UDP for HTTPS, using ufw-like management command.

However, we found that if you want to use the brand-new UDP-based protocol, HTTP/3, on rpxy, you need to explicitly expose your HTTPS port by using ufw-like command.

% sudo ufw allow 443
% sudo ufw enable

Your docker container can receive only TCP-based connection, i.e., HTTP/2 or before, unless you manually manage the port. We see that this is weird and expect that it is a kind of bug (of docker? ubuntu? or something else?). But at least for Ubuntu 22.04LTS, you need to handle it as above.

Other TIPS

todo!

License

rpxy is free, open-source software licensed under MIT License.

You can open issues for bugs you've found or features you think are missing. You can also submit pull requests to this repository.

Contributors are more than welcome!

Footnotes

  1. We should note that NGINX doesn't guarantee such a consistency by default. To this end, you have to add if statement in the configuration file in NGINX.

  2. HTTP/3 libraries are mutually exclusive. You need to explicitly specify s2n-quic with --no-default-features flag. Also note that if you build rpxy with s2n-quic, then it requires openssl just for building the package.

More Repositories

1

jscu

JavaScript cryptographic utilities for crypto-suite compatibility including PEM/X509/JWK converter.
TypeScript
139
star
2

dnscrypt-proxy-modns

Fork of dnscrypt-proxy to implement a multiple-relay-based DNS anonymization protocol (mu-ODNS)
Go
29
star
3

lecture-security_engineering

Slide decks and sample codes for a lecture of "Security Engineering", which are composed in terms of how to choose and deploy appropriate standardization security technologies in information systems.
Rust
25
star
4

doh-auth-proxy

Local DNS proxy for DNS over HTTPS (DoH), Oblivious DoH (ODoH) and Multiple-relay-based ODoH extension (Mutualized ODoH; MODoH), which additionally supports domain-based filtering and proxy/resolver authentication
Rust
19
star
5

encrypted-dns-server-modns

Fork of encrypted-dns-server to implement a multiple-relay-based DNS anonymization protocol (mu-ODNS)
Rust
10
star
6

rust-gd

An Implementation of Generalized Deduplication, written in Rust
Rust
10
star
7

PySSS

Secret sharing scheme on Python
Python
7
star
8

js-aws-signature-v4

TypeScript Implementation of AWS Signature Version 4
JavaScript
6
star
9

experimental-resolvers

Experimental resolvers of DNSCrypt v2 and relays of PoC μODNS
5
star
10

rust-token-server

REST API server to handle JSON Web Token (as an OIDC authentication server), written in Rust
Rust
5
star
11

cascade

An encryption and signing library for x-brid encryption via several crypto suites
JavaScript
4
star
12

jseu

Miscellaneous Encoding Utilities for Crypto-related Objects in JavaScript
TypeScript
2
star
13

js_project_skeleton

Project Skeleton for JavaScript 'Universal' Library Development for Node.js and Browsers
JavaScript
2
star
14

class-fido2_webauthn

FIDO2 WebAuthnの解説資料とサンプルコード
TeX
2
star
15

class-e2e_security_js

株式会社ゼタント「JavaScriptを使って学ぶEnd-to-Endセキュリティ」という勉強会のサンプルコードとスライド
TeX
2
star
16

s2n-quic-h3-examples

Example implementations of s2n-quic for testing
Rust
2
star
17

js-crypto-key-utils

Marged to monorepo
JavaScript
2
star
18

js-crypto-rsa

Marged to monorepo
JavaScript
1
star
19

js-x509-utils

Marged to monorepo
JavaScript
1
star
20

rust-ordered_channel_experiment

Rust
1
star
21

junkurihara.github.io

Jun Kurihara (栗原 淳)
TeX
1
star
22

python-check_certchain

A sample code to check a certificate chain for a host, written in Python
Python
1
star