OpenPCDet代码分析与注释
已完成PointPillar和Second的分析
先看博客和流程图完成整体分析,再看代码注释,调试完成细节分析
- 整体分析包括:datasets、tools、ops的iou3d_nms和models的detectors等内容 https://zhuanlan.zhihu.com/p/427609274
- OpenPCDet-KITTI 3D数据集评价指标-eval.py详细解读(1)https://zhuanlan.zhihu.com/p/428717657
- OpenPCDet-KITTI 3D数据集评价指标-eval.py详细解读(2)https://zhuanlan.zhihu.com/p/428821772
- PointPillar代码解析 https://zhuanlan.zhihu.com/p/432205459
- 关于second中的3D稀疏卷积以及spconv库的相关解析 https://zhuanlan.zhihu.com/p/438209175
- 双阶段网络VoxelRCNN分析:https://zhuanlan.zhihu.com/p/464688856
如果觉得还行,可以给个star呀!博客也可以给个赞哈!!!
OpenPCDet
OpenPCDet
is a clear, simple, self-contained open source project for LiDAR-based 3D object detection.
It is also the official code release of [PointRCNN]
, [Part-A^2 net]
, [PV-RCNN]
and [Voxel R-CNN]
.
Overview
Changelog
[2021-06-08] Added support for the voxel-based 3D object detection model Voxel R-CNN
[2021-05-14] Added support for the monocular 3D object detection model CaDDN
[2020-11-27] Bugfixed: Please re-prepare the validation infos of Waymo dataset (version 1.2) if you would like to use our provided Waymo evaluation tool (see PR). Note that you do not need to re-prepare the training data and ground-truth database.
[2020-11-10] NEW: The Waymo Open Dataset has been supported with state-of-the-art results. Currently we provide the
configs and results of SECOND
, PartA2
and PV-RCNN
on the Waymo Open Dataset, and more models could be easily supported by modifying their dataset configs.
[2020-08-10] Bugfixed: The provided NuScenes models have been updated to fix the loading bugs. Please redownload it if you need to use the pretrained NuScenes models.
[2020-07-30] OpenPCDet
v0.3.0 is released with the following features:
- The Point-based and Anchor-Free models (
PointRCNN
,PartA2-Free
) are supported now. - The NuScenes dataset is supported with strong baseline results (
SECOND-MultiHead (CBGS)
andPointPillar-MultiHead
). - High efficiency than last version, support PyTorch 1.1~1.7 and spconv 1.0~1.2 simultaneously.
[2020-07-17] Add simple visualization codes and a quick demo to test with custom data.
[2020-06-24] OpenPCDet
v0.2.0 is released with pretty new structures to support more models and datasets.
[2020-03-16] OpenPCDet
v0.1.0 is released.
Introduction
OpenPCDet
toolbox do?
What does Note that we have upgrated PCDet
from v0.1
to v0.2
with pretty new structures to support various datasets and models.
OpenPCDet
is a general PyTorch-based codebase for 3D object detection from point cloud.
It currently supports multiple state-of-the-art 3D object detection methods with highly refactored codes for both one-stage and two-stage 3D detection frameworks.
Based on OpenPCDet
toolbox, we win the Waymo Open Dataset challenge in 3D Detection,
3D Tracking, Domain Adaptation
three tracks among all LiDAR-only methods, and the Waymo related models will be released to OpenPCDet
soon.
We are actively updating this repo currently, and more datasets and models will be supported soon. Contributions are also welcomed.
OpenPCDet
design pattern
- Data-Model separation with unified point cloud coordinate for easily extending to custom datasets:
-
Unified 3D box definition: (x, y, z, dx, dy, dz, heading).
-
Flexible and clear model structure to easily support various 3D detection models:
- Support various models within one framework as:
Currently Supported Features
- Support both one-stage and two-stage 3D object detection frameworks
- Support distributed training & testing with multiple GPUs and multiple machines
- Support multiple heads on different scales to detect different classes
- Support stacked version set abstraction to encode various number of points in different scenes
- Support Adaptive Training Sample Selection (ATSS) for target assignment
- Support RoI-aware point cloud pooling & RoI-grid point cloud pooling
- Support GPU version 3D IoU calculation and rotated NMS
Model Zoo
KITTI 3D Object Detection Baselines
Selected supported methods are shown in the below table. The results are the 3D detection performance of moderate difficulty on the val set of KITTI dataset.
- All models are trained with 8 GTX 1080Ti GPUs and are available for download.
- The training time is measured with 8 TITAN XP GPUs and PyTorch 1.5.
training time | Car@R11 | Pedestrian@R11 | Cyclist@R11 | download | |
---|---|---|---|---|---|
PointPillar | ~1.2 hours | 77.28 | 52.29 | 62.68 | model-18M |
SECOND | ~1.7 hours | 78.62 | 52.98 | 67.15 | model-20M |
SECOND-IoU | - | 79.09 | 55.74 | 71.31 | model |
PointRCNN | ~3 hours | 78.70 | 54.41 | 72.11 | model-16M |
PointRCNN-IoU | ~3 hours | 78.75 | 58.32 | 71.34 | model-16M |
Part-A^2-Free | ~3.8 hours | 78.72 | 65.99 | 74.29 | model-226M |
Part-A^2-Anchor | ~4.3 hours | 79.40 | 60.05 | 69.90 | model-244M |
PV-RCNN | ~5 hours | 83.61 | 57.90 | 70.47 | model-50M |
Voxel R-CNN (Car) | ~2.2 hours | 84.54 | - | - | model-28M |
CaDDN | ~15 hours | 21.38 | 13.02 | 9.76 | model-774M |
NuScenes 3D Object Detection Baselines
All models are trained with 8 GTX 1080Ti GPUs and are available for download.
mATE | mASE | mAOE | mAVE | mAAE | mAP | NDS | download | |
---|---|---|---|---|---|---|---|---|
PointPillar-MultiHead | 33.87 | 26.00 | 32.07 | 28.74 | 20.15 | 44.63 | 58.23 | model-23M |
SECOND-MultiHead (CBGS) | 31.15 | 25.51 | 26.64 | 26.26 | 20.46 | 50.59 | 62.29 | model-35M |
Waymo Open Dataset Baselines
We provide the setting of DATA_CONFIG.SAMPLED_INTERVAL
on the Waymo Open Dataset (WOD) to subsample partial samples for training and evaluation,
so you could also play with WOD by setting a smaller DATA_CONFIG.SAMPLED_INTERVAL
even if you only have limited GPU resources.
By default, all models are trained with 20% data (~32k frames) of all the training samples on 8 GTX 1080Ti GPUs, and the results of each cell here are mAP/mAPH calculated by the official Waymo evaluation metrics on the whole validation set (version 1.2).
Vec_L1 | Vec_L2 | Ped_L1 | Ped_L2 | Cyc_L1 | Cyc_L2 | |
---|---|---|---|---|---|---|
SECOND | 68.03/67.44 | 59.57/59.04 | 61.14/50.33 | 53.00/43.56 | 54.66/53.31 | 52.67/51.37 |
Part-A^2-Anchor | 71.82/71.29 | 64.33/63.82 | 63.15/54.96 | 54.24/47.11 | 65.23/63.92 | 62.61/61.35 |
PV-RCNN | 74.06/73.38 | 64.99/64.38 | 62.66/52.68 | 53.80/45.14 | 63.32/61.71 | 60.72/59.18 |
We could not provide the above pretrained models due to Waymo Dataset License Agreement, but you could easily achieve similar performance by training with the default configs.
Other datasets
More datasets are on the way.
Installation
Please refer to INSTALL.md for the installation of OpenPCDet
.
Quick Demo
Please refer to DEMO.md for a quick demo to test with a pretrained model and visualize the predicted results on your custom data or the original KITTI data.
Getting Started
Please refer to GETTING_STARTED.md to learn more usage about this project.
License
OpenPCDet
is released under the Apache 2.0 license.
Acknowledgement
OpenPCDet
is an open source project for LiDAR-based 3D scene perception that supports multiple
LiDAR-based perception models as shown above. Some parts of PCDet
are learned from the official released codes of the above supported methods.
We would like to thank for their proposed methods and the official implementation.
We hope that this repo could serve as a strong and flexible codebase to benefit the research community by speeding up the process of reimplementing previous works and/or developing new methods.
Citation
If you find this project useful in your research, please consider cite:
@misc{openpcdet2020,
title={OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds},
author={OpenPCDet Development Team},
howpublished = {\url{https://github.com/open-mmlab/OpenPCDet}},
year={2020}
}
Contribution
Welcome to be a member of the OpenPCDet development team by contributing to this repo, and feel free to contact us for any potential contributions.