• Stars
    star
    440
  • Rank 99,050 (Top 2 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Deep Demand Forecast Models

Pytorch Implementation of DeepAR, MQ-RNN, Deep Factor Models, LSTNet, and TPA-LSTM. Furthermore, combine all these model to deep demand forecast model API.

Requirements

Please install Pytorch before run it, and

pip install -r requirements.txt

Run tests

# DeepAR
python deepar.py -e 100 -spe 3 -nl 1 -l g -not 168 -sp -rt -es 10 -hs 50  -sl 60 -ms

# MQ-RNN
python mq_rnn.py -e 100 -spe 3 -nl 1 -sp -sl 72 -not 168 -rt -ehs 50 -dhs 20 -ss -es 10 -ms

# Deep Factors
python deep_factors.py -e 100 -spe 3 -rt -not 168 -sp -sl 168 -ms

# TPA-LSTM
python tpa_lstm.py -e 1000 -spe 1 -nl 1 -not 168 -sl 30 -sp -rt -max

DeepAR
alt text
MQ-RNN
alt text
Deep Factors
alt text
TPA-LSTM
alt text

Arguments

Arguments Details
-e number of episodes
-spe steps per episode
-sl sequence length
-not number of observations to train
-ms mean scaler on y
-max max scaler on y
-nl number of layers
-l likelihood to select, "g" or "nb"
-rt run test data
-sample_size sample size to sample after
training in deep factors/deepar, default 100

TO DO

  • Deep Factor Model
  • TPA-LSTM pytorch
  • LSTNet pytorch
  • Debug Uber Extreme forcaster
  • Modeling Extreme Events in TS
  • Intermittent Demand Forecasting
  • Model API

Demand Forecast Dataset Resources

Reference