• This repository has been archived on 02/Aug/2024
  • Stars
    star
    744
  • Rank 60,965 (Top 2 %)
  • Language
    C++
  • License
    MIT License
  • Created almost 5 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

P(R*_{3, 0, 1}) specialized SIMD Geometric Algebra Library

License: MIT DOI

Build Status Build Status Coverity Status Codacy Badge

πŸ‘‰πŸ‘‰ Project Site πŸ‘ˆπŸ‘ˆ

Description

Do you need to do any of the following? Quickly? Really quickly even?

  • Projecting points onto lines, lines to planes, points to planes?
  • Measuring distances and angles between points, lines, and planes?
  • Rotate or translate points, lines, and planes?
  • Perform smooth rigid body transforms? Interpolate them smoothly?
  • Construct lines from points? Planes from points? Planes from a line and a point?
  • Intersect planes to form lines? Intersect a planes and lines to form points?

If so, then Klein is the library for you!

Klein is an implementation of P(R*_{3, 0, 1}), aka 3D Projective Geometric Algebra. It is designed for applications that demand high-throughput (animation libraries, kinematic solvers, etc). In contrast to other GA libraries, Klein does not attempt to generalize the metric or dimensionality of the space. In exchange for this loss of generality, Klein implements the algebraic operations using the full weight of SSE (Streaming SIMD Extensions) for maximum throughput.

Requirements

  • Machine with a processor that supports SSE3 or later (Steam hardware survey reports 100% market penetration)
  • C++11/14/17 compliant compiler (tested with GCC 9.2.1, Clang 9.0.1, and Visual Studio 2019)
  • Optional SSE4.1 support

Usage

You have two options to use Klein in your codebase. First, you can simply copy the contents of the public folder somewhere in your include path. Alternatively, you can include this entire project in your source tree, and using cmake, add_subdirectory(Klein) and link the klein::klein interface target.

In your code, there is a single header to include via #include <klein/klein.hpp>, at which point you can create planes, points, lines, ideal lines, bivectors, motors, directions, and use their operations. Please refer to the project site for the most up-to-date documentation.

Motivation

PGA fully streamlines traditionally used quaternions, and dual-quaternions in a single algebra. Normally, the onus is on the user to perform appropriate casts and ensure signs and memory layout are accounted for. Here, all types are unified within the geometric algebra, and operations such as applying quaternion or dual-quaternions (rotor/motor) to planes, points, and lines make sense. There is a surprising amount of uniformity in the algebra, which enables efficient implementation, a simple API, and reduced code size.

Performance Considerations

It is known that a "better" way to vectorize computation in general is to arrange the data in an SoA layout to avoid unnecessary cross-lane arithmetic or unnecessary shuffling. PGA is unique in that a given PGA multivector has a natural decomposition into 4 blocks of 4 floating-point quantities. For the even sub-algebra (isomorphic to the space of dual-quaternions) also known as the motor algebra, the geometric product can be densely packed and implemented efficiently using SSE.

References

Klein is deeply indebted to several members of the GA community and their work. Beyond the works cited here, the author stands of the shoulders of giants (Felix Klein, Sophus Lie, Arthur Cayley, William Rowan Hamilton, Julius PlΓΌcker, and William Kingdon Clifford, among others).

[1] Gunn, Charles G. (2019). Course notes Geometric Algebra for Computer Graphics, SIGGRAPH 2019. arXiv link

[2] Steven De Keninck and Charles Gunn. (2019). SIGGRAPH 2019 Geometric Algebra Course. youtube link

[3] Leo Dorst, Daniel Fontijne, Stephen Mann. (2007) Geometric Algebra for Computer Science. Burlington, MA: Morgan Kaufmann Publishers Inc.

More Repositories

1

Selene

Simple C++11 friendly header-only bindings to Lua
C++
811
star
2

websocket_client

Erlang websocket client (ws and wss supported)
Erlang
183
star
3

cpp_nn_in_a_weekend

Article and source code reference to construct a C++ neural network in a weekend without any dependencies
C++
148
star
4

coop

C++20 coroutines-based cooperative multitasking library
C++
103
star
5

gal

Geometric Algebra Library
C++
93
star
6

paperbug

An indexed compendium of graphics programming papers, articles, blog posts, presentations, and more
JavaScript
91
star
7

flop

FLOꟼ - An MIT-licensed image viewer equipped with a GPU-accelerated perceptual image diffing algorithm based on ꟻLIP
C++
64
star
8

opencl_in_action

Corrected source for the OpenCL in Action book (work in progress)
C
59
star
9

SDLpp

Lightweight C++11 bindings to SDL2
TeX
36
star
10

mc_ruler

Seamless llvm-mca CMake integration
CMake
26
star
11

spool

A C and C++ string pooling CMake-integrated preprocessor
C++
22
star
12

exprotoc

Elixir Protocol Buffers Compiler
Elixir
22
star
13

sharded_eredis

Erlang
20
star
14

eprotoc

Erlang proto file parser and code generator
Erlang
17
star
15

learningit

An overview of my git workflow. Feel free to suggest changes or fork your own version.
3
star
16

Yaiba

Yet Another Implementation of Buchberger's Algorithm
Haskell
2
star
17

ninepoints

Code snippets
C++
2
star
18

jeremyong.github.com

CSS
2
star
19

google-coredumper

Automatically exported from code.google.com/p/google-coredumper
Shell
1
star
20

o3de-extension

C
1
star
21

crdts_in_production

1
star
22

treebook

Ruby
1
star
23

simple_chat_server_tutorial

Erlang
1
star
24

simpleipc

Simple interprocess communication for C++ programs
C++
1
star