• Stars
    star
    179
  • Rank 214,039 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created about 4 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Canonical Correlation Analysis Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic methods in a scikit-learn style framework

DOI codecov Build Status Documentation Status version downloads DOI

drawing

CCA-Zoo

cca-zoo is a collection of linear, kernel, and deep methods for canonical correlation analysis of multiview data. Where possible it follows the scikit-learn/mvlearn APIs and models therefore have fit/transform/fit_transform methods as standard.

Table of Contents

Installation

You can install cca-zoo with pip or poetry. cca-zoo has an optional probabilistic feature that you can enable with the [probabilistic] suffix.

To install cca-zoo with pip, run one of the following commands in your terminal:

pip install cca-zoo

To install cca-zoo with poetry, run one of the following commands in your terminal:

pip install cca-zoo[probabilistic]

Can also use poetry to install:

poetry add cca-zoo

or

poetry add cca-zoo[probabilistic]

Documentation

Available at https://cca-zoo.readthedocs.io/en/latest/

Citation:

CCA-Zoo is intended as research software. Citations and use of our software help us justify the effort which has gone into, and will keep going into, maintaining and growing this project. Stars on the repo are also greatly appreciated :)

If you have used CCA-Zoo in your research, please consider citing our JOSS paper:

Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, https://doi.org/10.21105/joss.03823

With bibtex entry:

@article{Chapman2021,
  doi = {10.21105/joss.03823},
  url = {https://doi.org/10.21105/joss.03823},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {68},
  pages = {3823},
  author = {James Chapman and Hao-Ting Wang},
  title = {CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework},
  journal = {Journal of Open Source Software}
}

Contributions

A guide to contributions is available at https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html

Sources

I've added this section to give due credit to the repositories that helped me in addition to their copyright notices in the code where relevant.

Other Implementations of (regularised)CCA/PLS

MATLAB implementation

Implementation of Sparse PLS

MATLAB implementation of SPLS by @jmmonteiro

Other Implementations of DCCA/DCCAE

Keras implementation of DCCA from @VahidooX's github page

The following are the other implementations of DCCA in MATLAB and C++. These codes are written by the authors of the original paper:

Torch implementation of DCCA from @MichaelVll & @Arminarj

C++ implementation of DCCA from Galen Andrew's website

MATLAB implementation of DCCA/DCCAE from Weiran Wang's website

MATLAB implementation of TCCA

Implementation of VAE

Torch implementation of VAE