• Stars
    star
    318
  • Rank 131,872 (Top 3 %)
  • Language
    Python
  • Created almost 6 years ago
  • Updated almost 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This's the tool for CTR, including FM, FFM, NFFM and so on.

1.Introduction

This's the tool for CTR, including FM, FFM, NFFM, XdeepFM and so on.

Note: only implement FM, FFM and NFFM. More detail and another models will be implemented

2.Requirements

  • python3
  • sklearn
  • TensorFlow>=1.6

3.Kernel for NFFM

You can find kaggle kernel for NFFM in the following link: https://www.kaggle.com/guoday/nffm-baseline-0-690-on-lb

4.Kernel for Xdeepfm

You can find kaggle kernel of Xdeepfm in the following link: https://www.kaggle.com/guoday/xdeepfm-baseline

5.Quick Start

Loading dataset

import pandas as pd
import numpy as np
import tensorflow as tf
import ctrNet
from sklearn.model_selection import train_test_split
from src import misc_utils as utils
import os
train_df=pd.read_csv('data/train_small.txt',header=None,sep='\t')
train_df.columns=['label']+['f'+str(i) for i in range(39)]
train_df, dev_df,_,_ = train_test_split(train_df,train_df,test_size=0.1, random_state=2019)
dev_df, test_df,_,_ = train_test_split(dev_df,dev_df,test_size=0.5, random_state=2019)
features=['f'+str(i) for i in range(39)]

Creating hparams

hparam=tf.contrib.training.HParams(
            model='ffm', #['fm','ffm','nffm']
            k=16,
            hash_ids=int(1e5),
            batch_size=64,
            optimizer="adam", #['adadelta','adagrad','sgd','adam','ftrl','gd','padagrad','pgd','rmsprop']
            learning_rate=0.0002,
            num_display_steps=100,
            num_eval_steps=1000,
            epoch=3,
            metric='auc', #['auc','logloss']
            init_method='uniform', #['tnormal','uniform','normal','xavier_normal','xavier_uniform','he_normal','he_uniform']
            init_value=0.1,
            feature_nums=len(features))
utils.print_hparams(hparam)

Building model

os.environ["CUDA_DEVICE_ORDER"]='PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"]='0'
model=ctrNet.build_model(hparam)

Training model

#You can use control-c to stop training if the model doesn't improve.
model.train(train_data=(train_df[features],train_df['label']),\
            dev_data=(dev_df[features],dev_df['label']))

Testing model

from sklearn import metrics
preds=model.infer(dev_data=(test_df[features],test_df['label']))
fpr, tpr, thresholds = metrics.roc_curve(test_df['label']+1, preds, pos_label=2)
auc=metrics.auc(fpr, tpr)
print(auc)