Lists of all AI related learning materials and practical tools to get started with AI apps
Design Thinking β An Introduction
Amazon Web Services Learning Material
- AWS AI Sessionβ The session provides an overview of all Amazon AI technology offerings (Lex, Polly, Rekognition, ML, and Deep Learning AMI)
Self-Paced Labs
AWS self-paced labs provide hands-on practice in a live AWS environment with AWS services and real-world cloud scenarios. Follow step-by-step instructions to learn a service, practice a use case, or prepare for AWS Certification.
Introductory Lab
Lex
- Introduction to Amazon Lex
- Amazon Lex Webinar
- Amazon Lex: AWS conversational interface (chat bot)
- Documentation
Polly
- Introduction to Amazon Polly
- Amazon Polly Webinar -
- Amazon Polly β AWS Text To Speech (TTS) service
- Documentation
Rekognition
- Introduction to Amazon Rekognition
- Amazon Rekognition - Deep Learning-Based Image Analysis Webinar
- Amazon Rekognition β AWS image recognition service
- Documentation β What is Amazon Rekognition?
Machine Learning
-
Machine Learning
-
Session 1 β Empowering Developers to Build Smart Applications
-
Session 2 - Predicting Customer Churn with Amazon Machine Learning
-
AWS Machine Learning β End to end, managed service for creating and testing ML models and then deploying those models into production
-
Documentation
-
AWS Deep Learning AMI β Amazon Machine Image (AMI) optimized for deep learning efforts
Recommended Additional Resources
Take your skills to the next level with fundamental, advanced, and expert level labs.
- Creating Amazon EC2 Instances with Microsoft Windows
- Building Your First Amazon Virtual Private Cloud (VPC)
- Working with AWS CodeCommit on Windows
- Working with Amazon DynamoDB
Google Cloud - Learning Material
Below is the learning material that will help you learn about Google Cloud.
Network
- Networking 101 β 43 mins
The codelab provides common cloud developer experience as follows:
- Set up your lab environment and learn how to work with your GCP environment.
- Use of common open source tools to explore your network around the world.
- Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server.
- Testing and monitoring your network and instances.
- Cleanup.
Developing Solutions for Google Cloud Platform β 8 hours
Infrastructure
- Build a Slack Bot with Node.js on Kubernotes β 43 mins
- Creating a Virtual Machine β 10 mins
- Getting Started with App Engine (Python) β 13 mins
Data
- Introduction to Google Cloud Data Prep β 7 mins
- Create a Managed MySQL database with Cloud SQL β 19 mins
- Upload Objects to Cloud Storage β 11 mins
AI, Big Data & Machine Learning
- Introduction to Google Cloud Machine Learning β 1 hour
- Machine Learning APIs by Example β 30 min
- Google Cloud Platform Big Data and Machine Learning Fundamentals
Additional AI Materials
- Auto-awesome: Advanced Data Science on Google Cloud Platform β 45 min
- Run a Big Data Text Processing Pipeline in Cloud Dataflow β 21 min
- Image Classification Using Cloud ML Engine & Datalab β 58 min
- Structured Data Regression Using Cloud ML Engine & Datalab β 58 min
(Optional) Deep Learning & Tensorflow
Additional Reference Material
- Big Data & Machine Learning @ Google Cloud Next '17 - A collection of 49 videos
IBM Watson Learning Material
(Contributions are welcome in this space)
Microsoft Chat Bots Learning Material
Skills Prerequisite
- Git and Github
- NodeJS
- VS Code IDE
Training Paths
If you have the above Prerequisite skills, then take Advanced Training Path else take Novice Training Path.
Prerequisite Tutorials
Novice Training Path
Environment Set Up
- Download and Install Git
- Set up GitHub Account_
- Download and Install NodeJS
- Download and Install IDE - Visual Studio Code
- Download and Install the Bot Framework Emulator
- Git clone the Bot Education project - git clone
- Set Up Azure Free Trial Account
Cognitive Services (Defining Intelligence)
- Read Cognitive Services ADS Education Deck β git clone
- Review the guide for Understanding Natural language with LUIS
- Complete the NLP (LUIS) Training Lab from the installed Bot Education project β \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md
Bot Framework (Building Chat Bots)
- Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras
- Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) -
- Setup local environment and run emulator from the installed Bot Education project β \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
- Review and test in the emulator the βbot-helloβ from \bot-education\Student-Resources\BOTs\Node\bot-hello
Advanced Training Path
Environment Set Up
- Download and Install Git
- Set up GitHub Account_
- Download and Install NodeJS
- Download and Install IDE - Visual Studio Code
- Download and Install the Bot Framework Emulator
- Git clone the Bot Education project - git clone
- Set Up Azure Free Trial Account
- Git clone the Bot Builder Samples β git clone
Cognitive Services (Defining Intelligence)
- Read Cognitive Services ADS Education Deck β git clone
- Review the guide for Understanding Natural language with LUIS
Bot Framework (Building Chat Bots)
- Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras
- Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) -
- Setup local environment and run emulator from the installed Bot Education project β \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
Cognitive Services (Defining Intelligence) - Labs
- Complete the NLP (LUIS) Training Lab from the installed BOT Education project
- \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md
- Review, Deploy and run the LUIS BOT sample
Bot Framework (Building Chat Bots) β Labs
- Setup local environment and run emulator from the installed Bot Education project
- \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
- Review and test in the emulator the βbot-helloβ from
- \bot-education\Student-Resources\BOTs\Node\bot-hello
- Review and test in the emulator the βbot-recognizersβ from
- \bot-education\Student-Resources\BOTs\Node\bot-recognizers
<title></title> <script src="js/navigation.js"></script> Lecture Videos
Source Berkeley
Lecture Title | Lecturer | Semester | |
Lecture 1 | Introduction | Dan Klein | Fall 2012 |
Lecture 2 | Uninformed Search | Dan Klein | Fall 2012 |
Lecture 3 | Informed Search | Dan Klein | Fall 2012 |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | Fall 2012 |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | Fall 2012 |
Lecture 6 | Adversarial Search | Dan Klein | Fall 2012 |
Lecture 7 | Expectimax and Utilities | Dan Klein | Fall 2012 |
Lecture 8 | Markov Decision Processes I | Dan Klein | Fall 2012 |
Lecture 9 | Markov Decision Processes II | Dan Klein | Fall 2012 |
Lecture 10 | Reinforcement Learning I | Dan Klein | Fall 2012 |
Lecture 11 | Reinforcement Learning II | Dan Klein | Fall 2012 |
Lecture 12 | Probability | Pieter Abbeel | Spring 2014 |
Lecture 13 | Markov Models | Pieter Abbeel | Spring 2014 |
Lecture 14 | Hidden Markov Models | Dan Klein | Fall 2013 |
Lecture 15 | Applications of HMMs / Speech | Pieter Abbeel | Spring 2014 |
Lecture 16 | Bayes' Nets: Representation | Pieter Abbeel | Spring 2014 |
Lecture 17 | Bayes' Nets: Independence | Pieter Abbeel | Spring 2014 |
Lecture 18 | Bayes' Nets: Inference | Pieter Abbeel | Spring 2014 |
Lecture 19 | Bayes' Nets: Sampling | Pieter Abbeel | Fall 2013 |
Lecture 20 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | Spring 2014 |
Lecture 21 | Machine Learning: Naive Bayes | Nicholas Hay | Spring 2014 |
Lecture 22 | Machine Learning: Perceptrons | Pieter Abbeel | Spring 2014 |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | Spring 2014 |
Lecture 24 | Advanced Applications: NLP, Games, and Robotic Cars | Pieter Abbeel | Spring 2014 |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | Spring 2014 |
Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below:
Lecture Title | Lecturer | Notes | |
SBS-1 | DFS and BFS | Pieter Abbeel | Lec: Uninformed Search |
SBS-2 | A* Search | Pieter Abbeel | Lec: Informed Search |
SBS-3 | Alpha-Beta Pruning | Pieter Abbeel | Lec: Adversarial Search |
SBS-4 | D-Separation | Pieter Abbeel | Lec: Bayes' Nets: Independence |
SBS-5 | Elimination of One Variable | Pieter Abbeel | Lec: Bayes' Nets: Inference |
SBS-6 | Variable Elimination | Pieter Abbeel | Lec: Bayes' Nets: Inference |
SBS-7 | Sampling | Pieter Abbeel | Lec: Bayes' Nets: Sampling |
SBS-8 | Maximum Likelihood | Pieter Abbeel | Lec: Machine Learning: Naive Bayes |
SBS-9 | Laplace Smoothing | Pieter Abbeel | Lec: Machine Learning: Naive Bayes |
SBS-10 | Perceptrons | Pieter Abbeel | Lec: Machine Learning: Perceptrons |
******************
Per-Semester Video Archive(Berkeley)
The lecture videos from the most recent offerings are posted below.
Spring 2014 Lecture Videos
Fall 2013 Lecture Videos
Spring 2013 Lecture Videos
Fall 2012 Lecture Videos
Spring 2014
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Pieter Abbeel | |
Lecture 2 | Uninformed Search | Pieter Abbeel | |
Lecture 3 | Informed Search | Pieter Abbeel | |
Lecture 4 | Constraint Satisfaction Problems I | Pieter Abbeel | Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative |
Lecture 5 | Constraint Satisfaction Problems II | Pieter Abbeel | |
Lecture 6 | Adversarial Search | Pieter Abbeel | |
Lecture 7 | Expectimax and Utilities | Pieter Abbeel | |
Lecture 8 | Markov Decision Processes I | Pieter Abbeel | |
Lecture 9 | Markov Decision Processes II | Pieter Abbeel | |
Lecture 10 | Reinforcement Learning I | Pieter Abbeel | |
Lecture 11 | Reinforcement Learning II | Pieter Abbeel | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Markov Models | Pieter Abbeel | |
Lecture 14 | Hidden Markov Models | Pieter Abbeel | Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative |
Lecture 15 | Applications of HMMs / Speech | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 17 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 18 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 19 | Bayes' Nets: Sampling | Pieter Abbeel | Unrecorded, see Fall 2013 Lecture 16 |
Lecture 20 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 21 | Machine Learning: Naive Bayes | Nicholas Hay | |
Lecture 22 | Machine Learning: Perceptrons | Pieter Abbeel | |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP, Games, and Robotic Cars | Pieter Abbeel | |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Pieter Abbeel | Unrecorded |
******************
Fall 2013
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Dan Klein | |
Lecture 2 | Uninformed Search | Dan Klein | |
Lecture 3 | Informed Search | Dan Klein | |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | |
Lecture 6 | Adversarial Search | Dan Klein | |
Lecture 7 | Expectimax and Utilities | Dan Klein | |
Lecture 8 | Markov Decision Processes I | Dan Klein | |
Lecture 9 | Markov Decision Processes II | Dan Klein | |
Lecture 10 | Reinforcement Learning I | Dan Klein | |
Lecture 11 | Reinforcement Learning II | Dan Klein | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Dan Klein | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Dan Klein | |
Lecture 19 | Applications of HMMs / Speech | Dan Klein | |
Lecture 20 | Machine Learning: Naive Bayes | Dan Klein | |
Lecture 21 | Machine Learning: Perceptrons | Dan Klein | |
Lecture 22 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 23 | Machine Learning: Decision Trees and Neural Nets | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP and Robotic Cars | Dan Klein | Unrecorded, see Spring 2013 Lecture 24 |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Dan Klein, Pieter Abbeel |
Unrecorded |
******************
Spring 2013
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Pieter Abbeel | Video Down |
Lecture 2 | Uninformed Search | Pieter Abbeel | |
Lecture 3 | Informed Search | Pieter Abbeel | |
Lecture 4 | Constraint Satisfaction Problems I | Pieter Abbeel | |
Lecture 5 | Constraint Satisfaction Problems II | Pieter Abbeel | Unrecorded, see Fall 2012 Lecture 5 |
Lecture 6 | Adversarial Search | Pieter Abbeel | |
Lecture 7 | Expectimax and Utilities | Pieter Abbeel | |
Lecture 8 | Markov Decision Processes I | Pieter Abbeel | |
Lecture 9 | Markov Decision Processes II | Pieter Abbeel | |
Lecture 10 | Reinforcement Learning I | Pieter Abbeel | |
Lecture 11 | Reinforcement Learning II | Pieter Abbeel | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Pieter Abbeel | |
Lecture 19 | Applications of HMMs / Speech | Pieter Abbeel | |
Lecture 20 | Machine Learning: Naive Bayes | Pieter Abbeel | |
Lecture 21 | Machine Learning: Perceptrons I | Nicholas Hay | |
Lecture 22 | Machine Learning: Perceptrons II | Pieter Abbeel | |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP and Robotic Cars | Pieter Abbeel | |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Pieter Abbeel | Unrecorded |
******************
Fall 2012
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Dan Klein | |
Lecture 2 | Uninformed Search | Dan Klein | |
Lecture 3 | Informed Search | Dan Klein | |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | |
Lecture 6 | Adversarial Search | Dan Klein | |
Lecture 7 | Expectimax and Utilities | Dan Klein | |
Lecture 8 | Markov Decision Processes I | Dan Klein | |
Lecture 9 | Markov Decision Processes II | Dan Klein | |
Lecture 10 | Reinforcement Learning I | Dan Klein | |
Lecture 11 | Reinforcement Learning II | Dan Klein | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Pieter Abbeel | |
Lecture 19 | Applications of HMMs / Speech | Dan Klein | |
Lecture 20 | Machine Learning: Naive Bayes | Dan Klein | |
Lecture 21 | Machine Learning: Perceptrons | Dan Klein | |
Lecture 22 | Machine Learning: Kernels and Clustering | Dan Klein | |
Lecture 23 | Machine Learning: Decision Trees and Neural Nets | Pieter Abbeel | |
Lecture 24 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 25 | Advanced Applications: NLP and Robotic Cars | Dan Klein, Pieter Abbeel |
Unrecorded |
Lecture 26 | Conclusion | Dan Klein, Pieter Abbeel |
Unrecorded |
Lecture Slides
Here is the complete set of lecture slides, including videos, and videos of demos run in lecture: Slides [~3 GB].
The list below contains all the lecture powerpoint slides:
- Lecture 1: Introduction
- Lecture 2: Uninformed Search
- Lecture 3: Informed Search
- Lecture 4: CSPs I
- Lecture 5: CSPs II
- Lecture 6: Adversarial Search
- Lecture 7: Expectimax Search and Utilities
- Lecture 8: MDPs I
- Lecture 9: MDPs II
- Lecture 10: Reinforcement Learning I
- Lecture 11: Reinforcement Learning II
- Lecture 12: Probability
- Lecture 13: Markov Models
- Lecture 14: Hidden Markov Models
- Lecture 15: Particle Filters and Applications of HMMs
- Lecture 16: Bayes Nets I: Representation
- Lecture 17: Bayes Nets II: Independence
- Lecture 18: Bayes Nets III: Inference
- Lecture 19: Bayes Nets IV: Sampling
- Lecture 20: Decision Diagrams and VPI
- Lecture 21: Naive Bayes
- Lecture 22: Perceptron
- Lecture 23: Kernels and Clustering
- Lecture 24: Advanced Applications (NLP, Games, Cars)
- Lecture 25: Advanced Applications (Computer Vision and Robotics)
- Lecture 26: Conclusion
The source files for all live in-lecture demos are being prepared from Berkeley AI for release
Selected Research Papers
-
Collaborative Filtering with Recurrent Neural Networks (2016)
-
Deep Collaborative Filtering via Marginalized Denoising Auto-encoder (2015)
-
Nonparametric bayesian multitask collaborative filtering (2013)
-
Tensorflow: Large-scale machine learning on heterogeneous distributed systems
-
Caffe: Convolutional architecture for fast feature embedding
-
Chainer: A powerful, flexible and intuitive framework of neural networks
-
Large-scale video classification with convolutional neural networks
-
Efficient Estimation of Word Representations in Vector Space
-
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Stanford Syllabus CS 20SI: Tensorflow for Deep Learning Research
Comparative Study of Deep Learning Software Frameworks
** Reddit_ML- What Are You Reading**
- AI-Powered Social Bots(16 Jun 2017)
The Many Tribes of Artificial Intelligence ******************
The Deep Learning Roadmap
Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a
******************Best Practices for Training Deep Learning Networks
ML/DL Cheatsheets
Neural Network Architectures
Source: http://www.asimovinstitute.org/neural-network-zoo/
Microsoft Azure Algorithm Flowchart
Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet
SAS Algorithm Flowchart
Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
******************Algorithm Summary
Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
****************** Source: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/ ****************** ### Algorithm Pro/Con Source: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend ******************Python
Algorithms
Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/
******************Python Basics
Source: http://datasciencefree.com/python.pdf
******************Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA
******************Numpy
Source: https://www.dataquest.io/blog/numpy-cheat-sheet/
******************Source: http://datasciencefree.com/numpy.pdf
******************Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE
Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb
******************Pandas
Source: http://datasciencefree.com/pandas.pdf
******************Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U
******************Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb
Matplotlib
Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet
Scikit Learn
Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk
Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
Source: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb
******************Tensorflow
Pytorch
Source: https://github.com/bfortuner/pytorch-cheatsheet
******************Math
Probability
Source: http://www.wzchen.com/s/probability_cheatsheet.pdf
******************Linear Algebra
Source: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf
******************Statistics
Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf
Calculus
Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N