• Stars
    star
    261
  • Rank 156,630 (Top 4 %)
  • Language
    Jupyter Notebook
  • License
    Creative Commons ...
  • Created over 2 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The HierText dataset contains ~12k images from the Open Images dataset v6 with large amount of text entities. We provide word, line and paragraph level annotations.

The HierText Dataset

samples

Paper Code Competition

News

  • 2023.05.17: Competition report available here.
  • 2023.04.14: We have released the results (click here) of ICDAR 2023 Competition on Hierarchical TextDetection and Recognition. Congratulations and thanks for all the efforts!
  • 2022.12.12: We will be hosting ICDAR 2023 Competition on Hierarchical TextDetection and Recognition with HierText! The competition will be held on the Robust Reading Comprehension website, including two tasks, (1) Hierarchical Text Detection and (2) Word-Level End-to-End Text Detection and Recognition. See the website for more info.
  • 2022.08.17: The evaluation server is launched on Robust Reading Comprehension. Now you can submit the result of your method on this website.
  • 2022.05.11: The Out-of-Vocabulary competition is launched as part of the Text-in-Everything workshop at ECCV 2022. HierText is incorporated to construct the benchmark dataset.
  • 2022.06.02: Code and weights for the unified detector model are released in TensorFlow Model Garden.
  • 2022.03.03: Paper accepted to CVPR 2022.

Overview

HierText is the first dataset featuring hierarchical annotations of text in natural scenes and documents. The dataset contains 11639 images selected from the Open Images dataset, providing high quality word (~1.2M), line, and paragraph level annotations. Text lines are defined as connected sequences of words that are aligned in spatial proximity and are logically connected. Text lines that belong to the same semantic topic and are geometrically coherent form paragraphs. Images in HierText are rich in text, with average of more than 100 words per image.

We hope this dataset can help researchers developing more robust OCR models and enables research into unified OCR and layout analysis. Check out our paper for more details.

Opensourcing Unified Detector

In the paper, we also propose a novel method called Unified Detector, that unifies text detection and layout analysis. The code and pretrained checkpoint is now available at this repository

Getting Started

First clone the project:

git clone https://github.com/google-research-datasets/hiertext.git

(Optional but recommended) Create and enter a virtual environment:

sudo pip install virtualenv
virtualenv -p python3 hiertext_env
source ./hiertext_env/bin/activate

Then install the required dependencies using:

cd hiertext
pip install -r requirements.txt

Dataset downloading & processing

The ground-truth annotations of train and validation sets are stored in gt/train.jsonl.gz, gt/validation.jsonl.gz respectively. Use the following command to decompress the two files:

gzip -d gt/*.jsonl.gz

The images are hosted by CVDF. To download them one needs to install AWS CLI and run the following:

aws s3 --no-sign-request cp s3://open-images-dataset/ocr/train.tgz .
aws s3 --no-sign-request cp s3://open-images-dataset/ocr/validation.tgz .
aws s3 --no-sign-request cp s3://open-images-dataset/ocr/test.tgz .
tar -xzvf train.tgz
tar -xzvf validation.tgz
tar -xzvf test.tgz

Dataset inspection and visualization

Run the visualization notebook locally to inspect the data using:

jupyter notebook HierText_Visualization.ipynb

Dataset Description

We split the dataset into train (8281 images), validation (1724 images) and test (1634 images) sets. Users should train their models on train set, select the best model candidate based on evaluation results on validation set and finally report the performance on test set.

There are five tasks:

  • Word-level
    • Word detection (polygon)
    • End-to-end
  • Line-level
    • Line detection (union of words)
    • End-to-end
  • Paragraph detection (union of words)

Images

Images in HierText are of higher resolution with their long side constrained to 1600 pixels compared to previous datasets based on Open Images that are constrained to 1024 pixels. This results in more legible small text. The filename of each image is its corresponding image ID in the Open Images dataset. All images are stored in JPG format.

Annotations

The ground-truth has the following format:

{
  "info": {
    "date": "release date",
    "version": "current version"
  },
  "annotations": [  // List of dictionaries, one for each image.
    {
      "image_id": "the filename of corresponding image.",
      "image_width": image_width,  // (int) The image width.
      "image_height": image_height, // (int) The image height.
      "paragraphs": [  // List of paragraphs.
        {
          "vertices": [[x1, y1], [x2, y2],...,[xn, yn]],  // A loose bounding polygon with absolute values.
          "legible": true,  // If false, the region defined by `vertices` are considered as do-not-care in paragraph level evaluation.
          "lines": [  // List of dictionaries, one for each text line contained in this paragraph. Lines in paragraph may not follow the reading order.
            {
              "vertices": [[x1, y1], [x2, y2],...,[x4, y4]],  // A loose rotated rectangle with absolute values.
              "text": "the text content of the entire line",
              "legible": true,  // A line is legible if and only if all of its words are legible.
              "handwritten": false,  // True for handwritten text, false for printed text.
              "vertical": false,  // If true, characters have a vertical layout.
              "words": [  // List of dictionaries, one for each word contained in this line. Words inside a line follows the reading order.
                {
                  "vertices": [[x1, y1], [x2, y2],...,[xm, ym]],  // Tight bounding polygons. Curved text can have more than 4 vertices.
                  "text": "the text content of this word",
                  "legible": true,  // If false, the word can't be recognized and the `text` field will be an empty string.
                  "handwritten": false,  // True for handwritten text, false for printed text.
                  "vertical": false,  // If true, characters have a vertical layout.
                }, ...
              ]
            }, ...
          ]
        }, ...
      ]
    }, ...
  ]
}
  • Lines in a paragraph may not follow the reading order while words inside a line are ordered respect to the proper reading order.

  • Vertices in the ground-truth word polygon follow a specific order. See the below figure for details.

samples

Evaluation

Uses the following command for word-level detection evaluation:

python3 eval.py --gt=gt/validation.jsonl --result=/path/to/your/results.jsonl --output=/tmp/scores.txt --mask_stride=1

Add --e2e for end-to-end evaluation. Add --eval_lines and --eval_paragraphs to enable line-level and paragraph-level evaluation. Word-level evaluation is always performed.

Be careful when you set the mask_stride parameter. Please read the flag's definition. For results intended to be included in any publications, users are required to set --mask_stride=1.

To expedite the evaluation, users can also set the num_workers flag to run the job in parallel. Note that using too many workers may result in OOM.

Your predictions should be in a .jsonl file with the following format, even for word-level only evaluation, in which case a paragraph can contain a single line which contains a single word. For detection only evaluation, text can be set to an empty string.

{
  "annotations": [  // List of dictionaries, one for each image.
    {
      "image_id": "the filename of corresponding image.",
      "paragraphs": [  // List of paragraphs.
        {
          "lines": [  // List of lines.
            {
              "text": "the text content of the entire line",  // Set to empty string for detection-only evaluation.
              "words": [  // List of words.
                {
                  "vertices": [[x1, y1], [x2, y2],...,[xm, ym]],
                  "text": "the text content of this word",  // Set to empty string for detection-only evaluation.
                }, ...
              ]
            }, ...
          ]
        }, ...
      ]
    }, ...
  ]
}

NOTE In evaluation, lines and paragraphs are defined as the union of pixel-level masks of the underlying word level polygons.

Sample output on the validation set

We attached a sample output file in compressed form, sample_output.jsonl.gz, to this repo. Use gzip -d sample_output.jsonl.gz to uncompress it and pass to --result. You should be able to see the scores as those in sample_eval_scores.txt. These are the outputs and results on the validation set of the Unified Detector (line based) model proposed in our paper. Note the results are different from the ones reported in the paper which are computed on the test set.

Evaluation on the test set

To evaluate on the test set, please go to the Robust Reading Competition website. You will need to compress your json file with gzip before uploading it. The evaluation will take around 1 hour.

(Note: Currently, the results are hidden because of an ongoing competition. If you do not wish to participate in the competition but still want to evaluate your methods on HierText test set (e.g. in your research paper), you can email us requesting it. You will first need to submit your inference results via this website, and send us an email with your real names using your institutional email (e.g. edu, corp email). After verification, we will then send the evaluation results back to you.)

License

The HierText dataset are released under CC BY-SA 4.0 license.

BibTeX

Please cite our paper if you use the dataset in your work:

@inproceedings{long2022towards,
  title={Towards End-to-End Unified Scene Text Detection and Layout Analysis},
  author={Long, Shangbang and Qin, Siyang and Panteleev, Dmitry and Bissacco, Alessandro and Fujii, Yasuhisa and Raptis, Michalis},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

@article{long2023icdar,
  title={ICDAR 2023 Competition on Hierarchical Text Detection and Recognition},
  author={Long, Shangbang and Qin, Siyang and Panteleev, Dmitry and Bissacco, Alessandro and Fujii, Yasuhisa and Raptis, Michalis},
  journal={arXiv preprint arXiv:2305.09750},
  year={2023}
}

This is not an officially supported Google product. If you have any question, please email us at [email protected].

More Repositories

1

Objectron

Objectron is a dataset of short, object-centric video clips. In addition, the videos also contain AR session metadata including camera poses, sparse point-clouds and planes. In each video, the camera moves around and above the object and captures it from different views. Each object is annotated with a 3D bounding box. The 3D bounding box describes the object’s position, orientation, and dimensions. The dataset contains about 15K annotated video clips and 4M annotated images in the following categories: bikes, books, bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes
Jupyter Notebook
2,222
star
2

wit

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.
989
star
3

natural-questions

Natural Questions (NQ) contains real user questions issued to Google search, and answers found from Wikipedia by annotators. NQ is designed for the training and evaluation of automatic question answering systems.
Python
921
star
4

paws

This dataset contains 108,463 human-labeled and 656k noisily labeled pairs that feature the importance of modeling structure, context, and word order information for the problem of paraphrase identification.
Python
546
star
5

dstc8-schema-guided-dialogue

The Schema-Guided Dialogue Dataset
Python
541
star
6

conceptual-captions

Conceptual Captions is a dataset containing (image-URL, caption) pairs designed for the training and evaluation of machine learned image captioning systems.
Shell
515
star
7

ToTTo

ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. We hope it can serve as a useful research benchmark for high-precision conditional text generation.
434
star
8

conceptual-12m

Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.
357
star
9

tydiqa

TyDi QA contains 200k human-annotated question-answer pairs in 11 Typologically Diverse languages, written without seeing the answer and without the use of translation, and is designed for the training and evaluation of automatic question answering systems. This repository provides evaluation code and a baseline system for the dataset.
Python
288
star
10

wiki-reading

This repository contains the three WikiReading datasets as used and described in WikiReading: A Novel Large-scale Language Understanding Task over Wikipedia, Hewlett, et al, ACL 2016 (the English WikiReading dataset) and Byte-level Machine Reading across Morphologically Varied Languages, Kenter et al, AAAI-18 (the Turkish and Russian datasets).
Python
270
star
11

coarse-discourse

A large corpus of discourse annotations and relations on ~10K forum threads.
Python
238
star
12

simulated-dialogue

226
star
13

gap-coreference

GAP is a gender-balanced dataset containing 8,908 coreference-labeled pairs of (ambiguous pronoun, antecedent name), sampled from Wikipedia for the evaluation of coreference resolution in practical applications.
Python
224
star
14

KELM-corpus

212
star
15

Taskmaster

Please see the readme file as well as our 2019 EMNLP paper linked here -->
192
star
16

dakshina

The Dakshina dataset is a collection of text in both Latin and native scripts for 12 South Asian languages. For each language, the dataset includes a large collection of native script Wikipedia text, a romanization lexicon of words in the native script with attested romanizations, and some full sentence parallel data in both a native script of the language and the basic Latin alphabet.
185
star
17

word_sense_disambigation_corpora

SemCor and Masc documents annotated with NOAD word senses.
182
star
18

cvss

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus
182
star
19

Nutrition5k

Detailed visual + nutritional data for over 5,000 plates of food.
Python
155
star
20

C4_200M-synthetic-dataset-for-grammatical-error-correction

This dataset contains synthetic training data for grammatical error correction. The corpus is generated by corrupting clean sentences from C4 using a tagged corruption model. The approach and the dataset are described in more detail by Stahlberg and Kumar (2021) (https://www.aclweb.org/anthology/2021.bea-1.4/)
Python
152
star
21

boolean-questions

144
star
22

MAVE

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attribute extraction study.
Python
136
star
23

wiki-split

One million English sentences, each split into two sentences that together preserve the original meaning, extracted from Wikipedia edits.
123
star
24

tpu_graphs

C++
122
star
25

sentence-compression

Large corpus of uncompressed and compressed sentences from news articles.
121
star
26

QED

QED: A Framework and Dataset for Explanations in Question Answering
Python
114
star
27

RxR

Room-across-Room (RxR) is a large-scale, multilingual dataset for Vision-and-Language Navigation (VLN) in Matterport3D environments. It contains 126k navigation instructions in English, Hindi and Telugu, and 126k navigation following demonstrations. Both annotation types include dense spatiotemporal alignments between the text and the visual perceptions of the annotators
Python
112
star
28

presto

A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs
111
star
29

wiki-atomic-edits

A dataset of atomic wikipedia edits containing insertions and deletions of a contiguous chunk of text in a sentence. This dataset contains ~43 million edits across 8 languages.
104
star
30

clang8

cLang-8 is a dataset for grammatical error correction.
Python
99
star
31

richhf-18k

RichHF-18K dataset contains rich human feedback labels we collected for our CVPR'24 paper: https://arxiv.org/pdf/2312.10240, along with the file name of the associated labeled images (no urls or images are included in this dataset).
89
star
32

seahorse

Seahorse is a dataset for multilingual, multi-faceted summarization evaluation. It consists of 96K summaries with human ratings along 6 quality dimensions: comprehensibility, repetition, grammar, attribution, main idea(s), and conciseness, covering 6 languages, 9 systems and 4 datasets.
84
star
33

screen_qa

ScreenQA dataset was introduced in the "ScreenQA: Large-Scale Question-Answer Pairs over Mobile App Screenshots" paper. It contains ~86K question-answer pairs collected by human annotators for ~35K screenshots from Rico. It should be used to train and evaluate models capable of screen content understanding via question answering.
84
star
34

query-wellformedness

25,100 queries from the Paralex corpus (Fader et al., 2013) annotated with human ratings of whether they are well-formed natural language questions.
82
star
35

xsum_hallucination_annotations

Faithfulness and factuality annotations of XSum summaries from our paper "On Faithfulness and Factuality in Abstractive Summarization" (https://www.aclweb.org/anthology/2020.acl-main.173.pdf).
80
star
36

videoCC-data

VideoCC is a dataset containing (video-URL, caption) pairs for training video-text machine learning models. It is created using an automatic pipeline starting from the Conceptual Captions Image-Captioning Dataset.
75
star
37

vrdu

We identify the desiderata for a comprehensive benchmark and propose Visually Rich Document Understanding (VRDU). VRDU contains two datasets that represent several challenges: rich schema including diverse data types, complex templates, and diversity of layouts within a single document type.
72
star
38

Synthetic-Persona-Chat

The Synthetic-Persona-Chat dataset is a synthetically generated persona-based dialogue dataset. It extends the original Persona-Chat dataset.
Python
71
star
39

TimeDial

Temporal Commonsense Reasoning in Dialog
69
star
40

uninum

A database of number names for 186 languages, locales, and scripts
66
star
41

scin

The SCIN dataset contains 10,000+ images of dermatology conditions, crowdsourced with informed consent from US internet users. Contributions include self-reported demographic and symptom information and dermatologist labels. The dataset also contains estimated Fitzpatrick skin type and Monk Skin Tone.
Jupyter Notebook
62
star
42

TextNormalizationCoveringGrammars

Covering grammars for English and Russian text normalization
Makefile
60
star
43

Disfl-QA

A Benchmark Dataset for Understanding Disfluencies in Question Answering
60
star
44

relation-extraction-corpus

Automatically exported from code.google.com/p/relation-extraction-corpus
55
star
45

WikipediaHomographData

Labeled data for homograph disambiguation
53
star
46

GSM-IC

Grade-School Math with Irrelevant Context (GSM-IC) benchmark is an arithmetic reasoning dataset built upon GSM8K, by adding irrelevant sentences in problem descriptions. GSM-IC is constructed to evaluate the distractibility of language models.
50
star
47

Crisscrossed-Captions

Extended Intramodal and Intermodal Semantic Similarity Judgments for MS-COCO
Python
48
star
48

bam

Python
48
star
49

screen_annotation

The Screen Annotation dataset consists of pairs of mobile screenshots and their annotations. The annotations are in text format, and describe the UI elements present on the screen: their type, location, OCR text and a short description. It has been introduced in the paper `ScreenAI: A Vision-Language Model for UI and Infographics Understanding`.
46
star
50

synthetic-fur

A procedurally generated synthetic fur dataset with conditional inputs for machine learning and neural rendering.
46
star
51

screen2words

The dataset includes screen summaries that describes Android app screenshot's functionalities. It is used for training and evaluation of the screen2words models (our paper accepted by UIST'21 will be linked soon).
44
star
52

swim-ir

SWIM-IR is a Synthetic Wikipedia-based Multilingual Information Retrieval training set with 28 million query-passage pairs spanning 33 languages, generated using PaLM 2 and summarize-then-ask prompting.
43
star
53

clay

The dataset includes UI object type labels (e.g., BUTTON, IMAGE, CHECKBOX) that describes the semantic type of an UI object on Android app screenshots. It is used for training and evaluation of the screen layout denoising models (paper will be linked soon).
43
star
54

wiki-links

Automatically exported from code.google.com/p/wiki-links
42
star
55

Attributed-QA

We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in information-seeking scenarios. This release consists of human-rated system outputs for a new question-answering task, Attributed Question Answering (AQA).
Python
42
star
56

indic-gen-bench

IndicGenBench is a high-quality, multilingual, multi-way parallel benchmark for evaluating Large Language Models (LLMs) on 4 user-facing generation tasks across a diverse set 29 of Indic languages covering 13 scripts and 4 language families.
41
star
57

uibert

It includes two datasets that are used in the downstream tasks for evaluating UIBert: App Similar Element Retrieval data and Visual Item Selection (VIS) data. Both datasets are written TFRecords.
41
star
58

sanpo_dataset

Python
39
star
59

eev

The Evoked Expressions in Video dataset contains videos paired with the expected facial expressions over time exhibited by people reacting to the video content.
35
star
60

NewSHead

The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.
35
star
61

noun-verb

This dataset contains naturally-occurring English sentences that feature non-trivial noun-verb ambiguity.
35
star
62

global_streamflow_model_paper

Jupyter Notebook
34
star
63

TF-IDF-IIF-top100-wordlists

These are lists for a variety of languages containing words that are distinctive to each language.
34
star
64

Image-Caption-Quality-Dataset

A dataset of crowdsourced ratings for machine-generated image captions
33
star
65

QAmeleon

QAmeleon introduces synthetic multilingual QA data using PaLM, a 540B large language model. This dataset was generated by prompt tuning PaLM with only five examples per language. We use the synthetic data to finetune downstream QA models leading to improved accuracy in comparison to English-only and translation-based baselines.
33
star
66

Hinglish-TOP-Dataset

Consists of the largest (10K) human annotated code-switched semantic parsing dataset & 170K generated utterance using the CST5 augmentation technique. Queries are derived from TOPv2, a multi-domain task oriented semantic parsing dataset. Tests suggest that with CST5, up to 20x less labeled data can achieve the same semantic parsing performance.
33
star
67

discofuse

32
star
68

seegull

SeeGULL is a broad-coverage stereotype dataset in English containing stereotypes about identity groups spanning 178 countries across 8 different geo-political regions across 6 continents, as well as state-level identities within the US and India.
32
star
69

NewsQuizQA

NewsQuizQA is a quiz-style question-answer dataset used for generating quiz questions about the news
31
star
70

turkish-treebanks

A human-annotated morphosyntactic treebank for Turkish.
Python
31
star
71

eth_py150_open

A redistributable subset of the ETH Py150 corpus [https://www.sri.inf.ethz.ch/py150], introduced in the ICML 2020 paper 'Learning and Evaluating Contextual Embedding of Source Code' [https://proceedings.icml.cc/static/paper_files/icml/2020/5401-Paper.pdf].
29
star
72

MultiReQA

We are creating a challenging new benchmark MultiReQA: A Cross-Domain Evaluation for Retrieval Question Answering Models. Retrieval question answering (ReQA) is the task of retrieving a sentence-level answer to a question from an open corpus. MultiReQA is a new multi-domain ReQA evaluation suite composed of eight retrieval QA tasks drawn from publicly available QA datasets from the MRQA shared task. We believe that MultiReQA tests retrieval QA models’ ability to perform domain transfer tasks. This repository hosts the codes to convert existing QA datasets from MRQA shared task to the format of MultiReQA benchmark, as well as the sentence boundary annotations for QA datasets to exactly reproduce our work. Note that we are not redistributing the content in the original datasets available on MRQA share task, but just the sentence boundary annotations.
29
star
73

seq2act

This repository contains the opensource version of the datasets were used for different parts of training and testing of models that ground natural language to UI actions as described in the paper: "Mapping Natural Language Instructions to Mobile UI Action Sequences" by Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge, which is accepted in 2020 Annual Conference of the Association for Computational Linguistics (ACL 2020)
29
star
74

AIS

AIS is an evaluation framework for assessing whether the output of natural language models only contains information about the external world that is verifiable in source documents, or "Attributable to Identified Sources".
29
star
75

wikifact

Wikipedia based dataset to train relationship classifiers and fact extraction models
24
star
76

ccpe

A dataset consisting of 502 English dialogs with 12,000 annotated utterances between a user and an assistant discussing movie preferences in natural language. It was collected using a Wizard-of-Oz methodology between two paid crowd-workers, where one worker plays the role of an 'assistant', while the other plays the role of a 'user'. The 'assistant' elicits the 'user’s' preferences about movies following a Coached Conversational Preference Elicitation (CCPE) method. The assistant asks questions designed to minimize the bias in the terminology the 'user' employs to convey his or her preferences as much as possible, and to obtain these preferences in natural language. Each dialog is annotated with entity mentions, preferences expressed about entities, descriptions of entities provided, and other statements of entities.
24
star
77

dices-dataset

This repository contains two datasets with multi-turn adversarial conversations generated by human agents interacting with a dialog model and rated for safety by two corresponding diverse rater pools.
23
star
78

Video-Timeline-Tags-ViTT

A collection of videos annotated with timelines where each video is divided into segments, and each segment is labelled with a short free-text description
23
star
79

great

The dataset for the variable-misuse task, used in the ICLR 2020 paper 'Global Relational Models of Source Code' [https://openreview.net/forum?id=B1lnbRNtwr]
22
star
80

nyt-salience

Automatically exported from code.google.com/p/nyt-salience
22
star
81

answer-equivalence-dataset

This dataset contains human judgements about answer equivalence. The data is based on SQuAD (Stanford Question Answering Dataset), and contains 9k human judgements of answer candidates generated by Albert on the SQuAD train set, and an additional 14k human judgements for answer candidates produced by BiDAF, Luke, and XLNet on the SQuAD dev set.
Jupyter Notebook
21
star
82

WebRED

WebRED is a large and diverse manually annotated dataset for extracting relationships from a variety of text found on the World Wide Web.
20
star
83

adversarial-nibbler

This dataset contains results from all rounds of Adversarial Nibbler. This data includes adversarial prompts fed into public generative text2image models and validations for unsafe images. There will be two sets of data: all prompts submitted and all prompts attempted (sent to t2i models but not submitted as unsafe).
20
star
84

circa

Circa (meaning ‘approximately’) dataset aims to help machine learning systems to solve the problem of interpreting indirect answers to polar questions. The dataset contains pairs of yes/no questions and indirect answers, together with annotations for the interpretation of the answer. The data is collected in 10 different social conversation situations (eg. food preferences of a friend).
20
star
85

rico_semantics

Consists of ~500k human annotations on the RICO dataset identifying various icons based on their shapes and semantics, and associations between selected general UI elements and their text labels. Annotations also include human annotated bounding boxes which are more accurate and have a greater coverage of UI elements.
20
star
86

thesios

This repository describes I/O traces of Google storage servers and disks synthesized by Thesios. Thesios synthesizes representative I/O traces by combining down-sampled I/O traces collected from multiple disks (HDDs) attached to multiple storage servers in Google distributed storage system.
18
star
87

distribution-over-quantities

18
star
88

DaTaSeg-Objects365-Instance-Segmentation

We release the DaTaSeg Objects365 Instance Segmentation Dataset introduced in the DaTaSeg paper, which can be used as an evaluation benchmark for weakly or semi supervised segmentation.
Jupyter Notebook
16
star
89

birds-to-words

16
star
90

PropSegmEnt

PropSegmEnt is an annotated dataset for segmenting English text into propositions, and recognizing proposition-level entailment relations - whether a different, related document entails each proposition, contradicts it, or neither. It consists of clusters of closely related documents from the news and Wikipedia domains.
16
star
91

widget-caption

The dataset includes widget captions that describes UI element's functionalities. It is used for training and evaluation of the widget captioning model (please see the EMNLP'20 paper: https://arxiv.org/abs/2010.04295).
16
star
92

common-crawl-domain-names

Corpus of domain names scraped from Common Crawl and manually annotated to add word boundaries (e.g. "commoncrawl" to "common crawl").
16
star
93

2.5vrd

This dataset contains about 110k images annotated with the depth and occlusion relationships between arbitrary objects. It enables research on the 2.5D Visual Relationship Detection (2.5VRD) introduced in https://arxiv.org/abs/2104.12727.
15
star
94

maverics

MAVERICS (Manually-vAlidated Vq^2a Examples fRom Image-Caption datasetS) is a suite of test-only benchmarks for visual question answering (VQA).
14
star
95

lareqa

LAReQA is a challenging benchmark for evaluating language agnostic answer retrieval from a multilingual candidate pool. This repository contains a dataset we release as part of the LAReQA evaluation.
14
star
96

Textual-Entailment-New-Protocols

This data release is meant to accompany and document the paper: https://arxiv.org/abs/2004.11997 Collecting Entailment Data for Pretraining: New Protocols and Negative Results by Samuel R. Bowman, Jennimaria Palomaki, Livio Baldini Soares, and Emily Pitler
14
star
97

recognizing-multimodal-entailment

The dataset consists of public social media url pairs and the corresponding entailment label for an external conference (ACL 2021). Each url contains a post with both linguistic (text) and visual (image) content. Entailment labels are human annotated through Google Crowdsource.
Jupyter Notebook
13
star
98

nlp-fairness-for-india

Contains data resources to replicate results from the paper “Re-contextualizing Fairness in NLP: The Case of India”.
12
star
99

aart-ai-safety-dataset

AART: AI-Assisted Red-Teaming with Diverse Data Generation for New LLM-powered Applications
12
star
100

maxm

MaXM is a suite of test-only benchmarks for multilingual visual question answering in 7 languages: English (en), French (fr), Hindi (hi), Hebrew (iw), Romanian (ro), Thai (th), and Chinese (zh).
12
star