HuggingMolecules
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-trained models.
Quick tour
To quickly fine-tune a model on a dataset using the pytorch lightning package follow the below example based on the MAT model and the freesolv dataset:
from huggingmolecules import MatModel, MatFeaturizer
# The following import works only from the source code directory:
from experiments.src import TrainingModule, get_data_loaders
from torch.nn import MSELoss
from torch.optim import Adam
from pytorch_lightning import Trainer
from pytorch_lightning.metrics import MeanSquaredError
# Build and load the pre-trained model and the appropriate featurizer:
model = MatModel.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
# Build the pytorch lightning training module:
pl_module = TrainingModule(model,
loss_fn=MSELoss(),
metric_cls=MeanSquaredError,
optimizer=Adam(model.parameters()))
# Build the data loader for the freesolv dataset:
train_dataloader, _, _ = get_data_loaders(featurizer,
batch_size=32,
task_name='ADME',
dataset_name='hydrationfreeenergy_freesolv')
# Build the pytorch lightning trainer and fine-tune the module on the train dataset:
trainer = Trainer(max_epochs=100)
trainer.fit(pl_module, train_dataloader=train_dataloader)
# Make the prediction for the batch of SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=O'])
output = pl_module.model(batch)
Installation
Create your conda environment and install the rdkit package:
conda create -n huggingmolecules python=3.8.5
conda activate huggingmolecules
conda install -c conda-forge rdkit==2020.09.1
Then install huggingmolecules from the cloned directory:
conda activate huggingmolecules
pip install -e ./src
Huggingmolecules caches weights and configs of the models. To avoid issues with incompatibility of different package versions, it is recommended to clean up the cache directory after every package update:
python -m src.clean_cache --all
Project Structure
The project consists of two main modules: src/
and experiments/
modules:
- The
src/
module contains abstract interfaces for pre-trained models along with their implementations based on the pytorch library. This module makes configuring, downloading and running existing models easy and out-of-the-box. - The
experiments/
module makes use of abstract interfaces defined in thesrc/
module and implements scripts based on the pytorch lightning package for running various experiments. This module makes training, benchmarking and hyper-tuning of models flawless and easily extensible.
Supported models architectures
Huggingmolecules currently provides the following models architectures:
For ease of benchmarking, we also include wrappers in the experiments/
module for three other models architectures:
The src/ module
The implementations of the models in the src/
module are divided into three modules: configuration, featurization and
models module. The relation between these modules is shown on the following examples based on the MAT model:
Configuration examples
from huggingmolecules import MatConfig
# Build the config with default parameters values,
# except 'd_model' parameter, which is set to 1200:
config = MatConfig(d_model=1200)
# Build the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
# Build the pre-defined config with 'init_type' parameter set to 'normal':
config = MatConfig.from_pretrained('mat_masking_20M', init_type='normal')
# Save the pre-defined config with the previous modification:
config.save_to_cache('mat_masking_20M_normal.json')
# Restore the previously saved config:
config = MatConfig.from_pretrained('mat_masking_20M_normal.json')
Featurization examples
from huggingmolecules import MatConfig, MatFeaturizer
# Build the featurizer with pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer(config)
# Build the featurizer in one line:
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
# Encode (featurize) the batch of two SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=O'])
Models examples
from huggingmolecules import MatConfig, MatFeaturizer, MatModel
# Build the model with the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel(config)
# Load the pre-trained weights
# (which do not include the last layer of the model)
model.load_weights('mat_masking_20M')
# Build the model and load the pre-trained weights in one line:
model = MatModel.from_pretrained('mat_masking_20M')
# Encode (featurize) the batch of two SMILES strings:
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
batch = featurizer(['C/C=C/C', '[C]=O'])
# Feed the model with the encoded batch:
output = model(batch)
# Save the weights of the model (usually after the fine-tuning process):
model.save_weights('tuned_mat_masking_20M.pt')
# Load the previously saved weights
# (which now includes all layers of the model):
model.load_weights('tuned_mat_masking_20M.pt')
# Load the previously saved weights, but without
# the last layer of the model ('generator' in the case of the 'MatModel')
model.load_weights('tuned_mat_masking_20M.pt', excluded=['generator'])
# Build the model and load the previously saved weights:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel.from_pretrained('tuned_mat_masking_20M.pt',
excluded=['generator'],
config=config)
Running tests
To run base tests for src/
module, type:
pytest src/ --ignore=src/tests/downloading/
To additionally run tests for downloading module (which will download all models to your local computer and therefore may be slow), type:
pytest src/tests/downloading
The experiments/ module
Requirements
In addition to dependencies defined in the src/
module, the experiments/
module goes along with few others. To
install them, run:
pip install -r experiments/requirements.txt
The following packages are crucial for functioning of the experiments/
module:
Neptune.ai
In addition, we recommend installing the neptune.ai package:
-
Sign up to neptune.ai at https://neptune.ai/.
-
Get your Neptune API token (see getting-started for help).
-
Export your Neptune API token to
NEPTUNE_API_TOKEN
environment variable. -
Install neptune-client:
pip install neptune-client
. -
Enable neptune.ai in the
experiments/configs/setup.gin
file. -
Update
neptune.project_name
parameters inexperiments/configs/bases/*.gin
files.
Running scripts:
We recommend running experiments scripts from the source code. For the moment there are three scripts implemented:
experiments/scripts/train.py
- for training with the pytorch lightning packageexperiments/scripts/tune_hyper.py
- for hyper-parameters tuning with the optuna packageexperiments/scripts/benchmark.py
- for benchmarking based on the hyper-parameters tuning (grid-search)
In general running scripts can be done with the following syntax:
python -m experiments.scripts.<script_name> /
-d <dataset_name> /
-m <model_name> /
-b <parameters_bindings>
Then the script <script_name>.py
runs with functions/methods parameters values defined in the following gin-config
files:
experiments/configs/bases/<script_name>.gin
experiments/configs/datasets/<dataset_name>.gin
experiments/configs/models/<model_name>.gin
If the binding flag -b
is used, then bindings defined in <parameters_binding>
overrides corresponding
bindings defined in above gin-config files.
So for instance, to fine-tune the MAT model (pre-trained on masking_20M task) on the freesolv dataset using GPU 1, simply run:
python -m experiments.scripts.train /
-d freesolv /
-m mat /
-b model.pretrained_name=\"mat_masking_20M\"#train.gpus=[1]
or equivalently:
python -m experiments.scripts.train /
-d freesolv /
-m mat /
--model.pretrained_name mat_masking_20M /
--train.gpus [1]
Local dataset
To use a local dataset, create an appropriate gin-config file in the experiments/configs/datasets
directory and
specify the data.data_path
parameter within. For details see
the get_data_split
implementation.
Benchmarking
For the moment there is one benchmark available. It works as follows:
experiments/scripts/benchmark.py
: on the given dataset we fine-tune the given model on 10 learning rates and 6 seeded data splits (60 fine-tunings in total). Then we choose that learning rate that minimizes an averaged (on 6 data splits) validation metric (metric computed on the validation dataset, e.g. RMSE). The result is the averaged value of test metric for the chosen learning rate.
Running a benchmark is essentially the same as running any other script from the experiments/
module. So for instance
to benchmark the vanilla MAT model (without pre-training) on the Caco-2 dataset using GPU 0, simply run:
python -m experiments.scripts.benchmark /
-d caco2 /
-m mat /
--model.pretrained_name None /
--train.gpus [0]
However, the above script will only perform 60 fine-tunings. It won't compute the final benchmark result. To do that wee need to run:
python -m experiments.scripts.benchmark --results_only /
-d caco2 /
-m mat
The above script won't perform any fine-tuning, but will only compute the benchmark result. If we had neptune enabled
in experiments/configs/setup.gin
, all data necessary to compute the result will be fetched from the neptune
server.
Benchmark results
We performed the benchmark described in Benchmarking as experiments/scripts/benchmark.py
for
various models architectures and pre-training tasks.
Summary
We report mean/median ranks of tested models across all datasets (both regression and classification ones). For detailed results see Regression and Classification sections.
model | mean rank | rank std |
---|---|---|
MAT 200k | 5.6 | 3.5 |
MAT 2M | 5.3 | 3.4 |
MAT 20M | 4.1 | 2.2 |
GROVER Base | 3.8 | 2.7 |
GROVER Large | 3.6 | 2.4 |
ChemBERTa | 7.4 | 2.8 |
MolBERT | 5.9 | 2.9 |
D-MPNN | 6.3 | 2.3 |
D-MPNN 2d | 6.4 | 2.0 |
D-MPNN mc | 5.3 | 2.1 |
Regression
As the metric we used MAE for QM7 and RMSE for the rest of datasets.
model | FreeSolv | Caco-2 | Clearance | QM7 | Mean rank |
---|---|---|---|---|---|
MAT 200k | 0.913 ยฑ 0.196 | 0.405 ยฑ 0.030 | 0.649 ยฑ 0.341 | 87.578 ยฑ 15.375 | 5.25 |
MAT 2M | 0.898 ยฑ 0.165 | 0.471 ยฑ 0.070 | 0.655 ยฑ 0.327 | 81.557 ยฑ 5.088 | 6.75 |
MAT 20M | 0.854 ยฑ 0.197 | 0.432 ยฑ 0.034 | 0.640 ยฑ 0.335 | 81.797 ยฑ 4.176 | 5.0 |
Grover Base | 0.917 ยฑ 0.195 | 0.419 ยฑ 0.029 | 0.629 ยฑ 0.335 | 62.266 ยฑ 3.578 | 3.25 |
Grover Large | 0.950 ยฑ 0.202 | 0.414 ยฑ 0.041 | 0.627 ยฑ 0.340 | 64.941 ยฑ 3.616 | 2.5 |
ChemBERTa | 1.218 ยฑ 0.245 | 0.430 ยฑ 0.013 | 0.647 ยฑ 0.314 | 177.242 ยฑ 1.819 | 8.0 |
MolBERT | 1.027 ยฑ 0.244 | 0.483 ยฑ 0.056 | 0.633 ยฑ 0.332 | 177.117 ยฑ 1.799 | 8.0 |
Chemprop | 1.061 ยฑ 0.168 | 0.446 ยฑ 0.064 | 0.628 ยฑ 0.339 | 74.831 ยฑ 4.792 | 5.5 |
Chemprop 2d 1 | 1.038 ยฑ 0.235 | 0.454 ยฑ 0.049 | 0.628 ยฑ 0.336 | 77.912 ยฑ 10.231 | 6.0 |
Chemprop mc 2 | 0.995 ยฑ 0.136 | 0.438 ยฑ 0.053 | 0.627 ยฑ 0.337 | 75.575 ยฑ 4.683 | 4.25 |
1 chemprop with additional rdkit_2d_normalized features generator
2 chemprop with additional morgan_count features generator
Classification
We used ROC AUC as the metric.
model | HIA | Bioavailability | PPBR | Tox21 (NR-AR) | BBBP | Mean rank |
---|---|---|---|---|---|---|
MAT 200k | 0.943 ยฑ 0.015 | 0.660 ยฑ 0.052 | 0.896 ยฑ 0.027 | 0.775 ยฑ 0.035 | 0.709 ยฑ 0.022 | 5.8 |
MAT 2M | 0.941 ยฑ 0.013 | 0.712 ยฑ 0.076 | 0.905 ยฑ 0.019 | 0.779 ยฑ 0.056 | 0.713 ยฑ 0.022 | 4.2 |
MAT 20M | 0.935 ยฑ 0.017 | 0.732 ยฑ 0.082 | 0.891 ยฑ 0.019 | 0.779 ยฑ 0.056 | 0.735 ยฑ 0.006 | 3.4 |
Grover Base | 0.931 ยฑ 0.021 | 0.750 ยฑ 0.037 | 0.901 ยฑ 0.036 | 0.750 ยฑ 0.085 | 0.735 ยฑ 0.006 | 4.0 |
Grover Large | 0.932 ยฑ 0.023 | 0.747 ยฑ 0.062 | 0.901 ยฑ 0.033 | 0.757 ยฑ 0.057 | 0.757 ยฑ 0.057 | 4.2 |
ChemBERTa | 0.923 ยฑ 0.032 | 0.666 ยฑ 0.041 | 0.869 ยฑ 0.032 | 0.779 ยฑ 0.044 | 0.717 ยฑ 0.009 | 7.0 |
MolBERT | 0.942 ยฑ 0.011 | 0.737 ยฑ 0.085 | 0.889 ยฑ 0.039 | 0.761 ยฑ 0.058 | 0.742 ยฑ 0.020 | 4.6 |
Chemprop | 0.924 ยฑ 0.069 | 0.724 ยฑ 0.064 | 0.847 ยฑ 0.052 | 0.766 ยฑ 0.040 | 0.726 ยฑ 0.008 | 7.0 |
Chemprop 2d | 0.923 ยฑ 0.015 | 0.712 ยฑ 0.067 | 0.874 ยฑ 0.030 | 0.775 ยฑ 0.041 | 0.724 ยฑ 0.006 | 6.8 |
Chemprop mc | 0.924 ยฑ 0.082 | 0.740 ยฑ 0.060 | 0.869 ยฑ 0.033 | 0.772 ยฑ 0.041 | 0.722 ยฑ 0.008 | 6.2 |