CGI-Stereo: Accurate and Real-Time Stereo Matching via Context and Geometry Interaction
Gangwei Xu*, Huan Zhou*, Xin Yang
Paper
SOTA results.
The proposed CGF-ACV ranks the first on the KITTI 2012 and 2015 leaderboards among all the published methods. The proposed CGI-Stereo outperforms all other published real-time methods on KITTI benchmarks.
Our proposed CGF can be easily embedded into many existing stereo matching networks, such as PSMNet, GwcNet and ACVNet. The resulting networks are improved in accuracy by a large margin.
Method | KITTI 2012 (3-noc) |
KITTI 2012 (3-all) |
KITTI 2015 (D1-bg) |
KITTI 2015 (D1-fg) |
KITTI 2015 (D1-all) |
---|---|---|---|---|---|
PSMNet | 1.49 % | 1.89 % | 1.86 % | 4.62 % | 2.32 % |
CGF-PSM | 1.21 % | 1.57 % | 1.46 % | 3.47 % | 1.80 % |
GwcNet | 1.32 % | 1.70 % | 1.74 % | 3.93 % | 2.11 % |
CGF-Gwc | 1.17 % | 1.52 % | 1.38 % | 3.34 % | 1.71 % |
ACVNet | 1.13 % | 1.47 % | 1.37 % | 3.07 % | 1.65 % |
CGF-ACV | 1.03 % | 1.34 % | 1.31 % | 3.08 % | 1.61 % |
How to use
Environment
- NVIDIA RTX 3090
- Python 3.8
- Pytorch 1.12
Install
Create a virtual environment and activate it.
conda create -n CGI python=3.8
conda activate CGI
Dependencies
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia
pip install opencv-python
pip install scikit-image
pip install tensorboard
pip install matplotlib
pip install tqdm
pip install timm==0.5.4
Data Preparation
Train
Use the following command to train CGI-Stereo on Scene Flow. First training,
python train_sceneflow.py --logdir ./checkpoints/sceneflow/first/
Second training,
python train_sceneflow.py --logdir ./checkpoints/sceneflow/second/ --loadckpt ./checkpoints/sceneflow/first/checkpoint_000019.ckpt
Use the following command to train CGI-Stereo on KITTI (using pretrained model on Scene Flow),
python train_kitti.py --logdir ./checkpoints/kitti/ --loadckpt ./checkpoints/sceneflow/second/checkpoint_000019.ckpt
Evaluation on Scene Flow and KITTI
Pretrained Model
Generate disparity images of KITTI test set,
python save_disp.py
Citation
If you find this project helpful in your research, welcome to cite the paper.
@article{xu2023cgi,
title={CGI-Stereo: Accurate and Real-Time Stereo Matching via Context and Geometry Interaction},
author={Xu, Gangwei and Zhou, Huan and Yang, Xin},
journal={arXiv preprint arXiv:2301.02789},
year={2023}
}
Acknowledgements
Thanks to Antyanta Bangunharcana for opening source of his excellent work Correlate-and-Excite.