• Stars
    star
    207
  • Rank 189,769 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A PyTorch implementation of "TasNet: Surpassing Ideal Time-Frequency Masking for Speech Separation" (see recipes in aps framework https://github.com/funcwj/aps)

ConvTasNet

A PyTorch implementation of the TasNet: Surpassing Ideal Time-Frequency Masking for Speech Separation

Requirements

see requirements.txt

Usage

./nnet/separate.py /path/to/checkpoint --input /path/to/mix.scp --gpu 0 > separate.log 2>&1 &
  • evaluate
./nnet/compute_si_snr.py /path/to/ref_spk1.scp,/path/to/ref_spk2.scp /path/to/inf_spk1.scp,/path/to/inf_spk2.scp

Result (on best configuratures in the paper)

ID Settings Causal Norm Param Loss Si-SDR
0 adam/lr:1e-3/wd:1e-5/32-batch/2gpu N BN/relu 8.75M -17.59/-15.45 14.63
1 adam/lr:1e-2/wd:1e-5/20-batch/2gpu N gLN/relu - -16.09/-15.21 14.58
2 adam/lr:1e-3/wd:1e-5/20-batch/2gpu N gLN/relu - -17.91/-16.54 15.87
3 adam/lr:1e-2/wd:1e-5/32-batch/2gpu N BN/sigmoid - -14.51/-13.40 12.62
4 adam/lr:1e-2/wd:1e-5/32-batch/2gpu N BN/relu - -17.20/-15.38 14.58
5 adam/lr:1e-3/wd:1e-5/20-batch/2gpu N gLN/sigmoid - -17.20/-16.11 15.55
6 adam/lr:1e-3/wd:1e-5/32-batch/2gpu Y BN/relu - -15.25/-12.47 11.42
7 adam/lr:1e-3/wd:1e-5/24-batch/2gpu N cLN/relu - -18.72/-16.17 15.25

Reference

Luo Y, Mesgarani N. TasNet: Surpassing Ideal Time-Frequency Masking for Speech Separation[J]. arXiv preprint arXiv:1809.07454, 2018.