awesome-graph-explainability-papers
Papers about the explainability of GNNs
Surveys
- [Arixv 23] A Survey on Explainability of Graph Neural Networks paper
- [TPAMI 22]Explainability in graph neural networks: A taxonomic survey. Yuan Hao, Yu Haiyang, Gui Shurui, Ji Shuiwang. paper
- [Arxiv 22]A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation Metrics paper
- [Arxiv 22] Trustworthy Graph Neural Networks: Aspects, Methods and Trends paper
- [Arxiv 22]A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation [paper]
- [Arxiv 22] A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection paper
- [Big Data 2022]A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis paper
- [Arxiv 22] Explaining the Explainers in Graph Neural Networks: a Comparative Study paper
Platforms
- PyTorch Geometric [Document] [Blog]
- DIG: A Turnkey Library for Diving into Graph Deep Learning Research paper Code
- GraphXAI: Evaluating Explainability for Graph Neural Networks paper Code
- GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks paper Code
- GNNExplainer and PGExplainer paper Code
- BAGEL: A Benchmark for Assessing Graph Neural Network Explanations [paper]Code
https://github.com/THUDM/cogdl/blob/master/gnn_papers.md#explainability
Most Influential Papers selected by [Cogdl](- Explainability in graph neural networks: A taxonomic survey. Yuan Hao, Yu Haiyang, Gui Shurui, Ji Shuiwang. ARXIV 2020. paper
- Gnnexplainer: Generating explanations for graph neural networks. Ying Rex, Bourgeois Dylan, You Jiaxuan, Zitnik Marinka, Leskovec Jure. NeurIPS 2019. paper code
- Explainability methods for graph convolutional neural networks. Pope Phillip E, Kolouri Soheil, Rostami Mohammad, Martin Charles E, Hoffmann Heiko. CVPR 2019.paper
- Parameterized Explainer for Graph Neural Network. Luo Dongsheng, Cheng Wei, Xu Dongkuan, Yu Wenchao, Zong Bo, Chen Haifeng, Zhang Xiang. NeurIPS 2020. paper code
- Xgnn: Towards model-level explanations of graph neural networks. Yuan Hao, Tang Jiliang, Hu Xia, Ji Shuiwang. KDD 2020. paper.
- Evaluating Attribution for Graph Neural Networks. Sanchez-Lengeling Benjamin, Wei Jennifer, Lee Brian, Reif Emily, Wang Peter, Qian Wesley, McCloskey Kevin, Colwell Lucy, Wiltschko Alexander. NeurIPS 2020.paper
- PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. Vu Minh, Thai My T.. NeurIPS 2020.paper
- Explanation-based Weakly-supervised Learning of Visual Relations with Graph Networks. Federico Baldassarre and Kevin Smith and Josephine Sullivan and Hossein Azizpour. ECCV 2020.paper
- GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media. Lu, Yi-Ju and Li, Cheng-Te. ACL 2020.paper
- On Explainability of Graph Neural Networks via Subgraph Explorations. Yuan Hao, Yu Haiyang, Wang Jie, Li Kang, Ji Shuiwang. ICML 2021.paper
Year 2023
- [KDD 23] MixupExplainer: Generalizing Explanations for Graph Neural Networks with Data Augmentation [paper]
- [Arxiv 23] RegExplainer: Generating Explanations for Graph Neural Networks in Regression Task [paper]
- [Thesis 23] Developing interpretable graph neural networks for high dimensional feature spaces [paper]
- [ICML 2023] Relevant Walk Search for Explaining Graph Neural Networks [paper]
- [ECML-PKDD 23] ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning [paper]
- [Arxiv 23] On the Interplay of Subset Selection and Informed Graph Neural Networks [paper]
- [Arxiv 23] Shift-Robust Molecular Relational Learning with Causal Substructure [paper]
- [ISSTA23] Interpreters for GNN-Based Vulnerability Detection: Are We There Yet? [paper]
- [ICECAI23] Improved GraphSVX for GNN Explanations Based on Cross Entropy [paper]
- [Arxiv 23] Towards Semantic Interpretation and Validation of Graph Attention-based Explanations [paper]
- [Arxiv 23] Towards Understanding the Generalization of Graph Neural Networks [paper]
- [Arxiv 23] TrustGuard: GNN-based Robust and Explainable Trust Evaluation with Dynamicity Support [paper]
- [Arxiv 23] Graph Neural Network based Log Anomaly Detection and Explanation [paper]
- [Arxiv 23] Interpreting GNN-based IDS Detections Using Provenance Graph Structural Features [paper]
- [Thesis 23] Interpretability of Graphical Models [paper]
- [Preprint 23] Interpretable Graph Networks Formulate Universal Algebra Conjectures [paper]
- [Bioengineering 2023] Personalized Explanations for Early Diagnosis of Alzheimer's Disease Using Explainable Graph Neural Networks with Population Graphs [paper]
- [BDSC 2023] MDC: An Interpretable GNNs Method Based on Node Motif Degree and Graph Diffusion Convolution [[paper]] (https://link.springer.com/chapter/10.1007/978-981-99-3925-1_24)
- [Arxiv 2023] In-Process Global Interpretation for Graph Learning via Distribution Matching [paper]
- [Information Science 2023] Explainability techniques applied to road traffic forecasting using Graph Neural Network models [paper]
- [Arxiv 23] Efficient GNN Explanation via Learning Removal-based Attribution [paper]
- [Arxiv 23] XInsight: Revealing Model Insights for GNNs with Flow-based Explanations [paper]
- [Arxiv 23] Empowering Counterfactual Reasoning over Graph Neural Networks through Inductivity [paper]
- [ICLR Tiny 23] Message-passing selection: Towards interpretable GNNs for graph classification [paper]
- [Arxiv 23] Robust Ante-hoc Graph Explainer using Bilevel Optimization [paper]
- [GRADES & NDA'23] A Demonstration of Interpretability Methods for Graph Neural Networks [paper]
- [Arxiv 23] Quantifying the Intrinsic Usefulness of Attributional Explanations for Graph Neural Networks with Artificial Simulatability Studies [paper]
- [Arxiv 23] Self-Explainable Graph Neural Networks for Link Prediction [paper]
- [Openreview 23] Revisiting CounteRGAN for Counterfactual Explainability of Graphs [paper]
- [Scientific Data 23 ] Evaluating explainability for graph neural networks [paper]
- [ChemRxiv 23] Interpreting Graph Neural Networks with Myerson Values for Cheminformatics Approaches [paper]
- [Nature Communications 23] Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking [paper]
- [Neural Networks 23] Generating Post-hoc Explanations for Skip-gram-based Node Embeddings by Identifying Important Nodes with Bridgeness [paper]
- [ICASSP 23] Towards a More Stable and General Subgraph Information Bottleneck [paper]
- [Arxiv 23] Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability [Paper]
- [IEEE Access] Generating Real-Time Explanations for GNNs via Multiple Specialty Learners and Online Knowledge Distillation [Paper]
- [AISTATS 23] Distill n' Explain: explaining graph neural networks using simple surrogates [Paper]
- [ICLR 23] GNNInterpreter: A Probabilistic Generative Model-Level Explanation for Graph Neural Networks [paper]
- [ICLR 23] Global Explainability of GNNs via Logic Combination of Learned Concepts [paper]
- [ICLR 23] Explaining Temporal Graph Models through an Explorer-Navigator Framework [paper]
- [ICLR 23] DAG Matters! GFlowNets Enhanced Explainer for Graph Neural Networks [paper]
- [ICLR 23] Interpretable Geometric Deep Learning via Learnable Randomness Injection [paper]
- [ICLR 23] A Differential Geometric View and Explainability of GNN on Evolving Graphs [paper]
- [ICDE 23] INGREX: An Interactive Explanation Framework for Graph Neural Networks[paper]
- [ICDE 23] Jointly Attacking Graph Neural Network and its Explanations [paper]
- [WWW 23]PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction [paper]
- [WSDM 23]Interpretable Research Interest Shift Detection with Temporal Heterogeneous Graphs [paper]
- [WSDM 23]Cooperative Explanations of Graph Neural Networks [paper]
- [WSDM 23]Towards Faithful and Consistent Explanations for Graph Neural Networks [paper]
- [WSDM 23] Global Counterfactual Explainer for Graph Neural Networks [paper]
- [AAAI 23] Global Concept-Based Interpretability for Graph Neural Networks via Neuron Analysis [paper]
- [AAAI23] On the Limit of Explaining Black-box Temporal Graph Neural Networks [paper]
- [AAAI23] Interpretable Chirality-Aware Graph Neural Network for Quantitative Structure Activity Relationship Modeling in Drug Discovery [paper]
- [IEEE Access] Providing Post-Hoc Explanation for Node Representation Learning Models Through Inductive Conformal Predictions [paper]
- [Journal of Software 23] A Slice-level vulnerability detection and interpretation method based on graph neural network [paper]
- [Automation in Construction 23] Learning from explainable data-driven tunneling graphs: A spatio-temporal graph convolutional network for clogging detection [paper]
- [Briefings in Bioinformatics] Predicting molecular properties based on the interpretable graph neural network with multistep focus mechanism [paper]
- [Briefings in Bioinformatics] Identification of vital chemical information via visualization of graph neural networks [paper]
- [Arixv 23] Explainable Multilayer Graph Neural Network for Cancer Gene Prediction [paper]
- [Arxiv 23] GCI: A Graph Concept Interpretation Framework [paper]
- [Arxiv 23] Explaining Graph Neural Networks via Non-parametric Subgraph Matching [paper]
- [Arxiv 23] CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis [paper]
- [Arxiv 23] Faithful and Consistent Graph Neural Network Explanations with Rationale Alignment [paper]
- [Arxiv 23] Structural Explanations for Graph Neural Networks using HSIC [paper]
Year 2022
- [NeurIPS 22] GStarX:Explaining Graph-level Predictions with Communication Structure-Aware Cooperative Games [paper]
- [NeurIPS 22] Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure [paper]
- [NeurIPS 22] Task-Agnostic Graph Neural Explanations [paper]
- [NeurIPS 22] CLEAR: Generative Counterfactual Explanations on Graphs[paper]
- [ICML 22] Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism [paper]
- [ICLR 22] DEGREE: Decomposition Based Explanation for Graph Neural Networks [paper]
- [ICLR 22] Explainable GNN-Based Models over Knowledge Graphs [paper]
- [ICLR 22] Discovering Invariant Rationales for Graph Neural Networks [paper]
- [KDD 22] On Structural Explanation of Bias in Graph Neural Networks [paper]
- [KDD 22] Causal Attention for Interpretable and Generalizable Graph Classification [paper]
- [CVPR 22] OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks [paper]
- [CVPR 22] Improving Subgraph Recognition with Variational Graph Information Bottleneck [paper]
- [AISTATS 22] Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods [paper]
- [AISTATS 22] CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks [paper]
- [TPAMI 22] Differentially Private Graph Neural Networks for Whole-Graph Classification [paper]
- [TPAMI 22] Reinforced Causal Explainer for Graph Neural Networks [paper]
- [VLDB 22] xFraud: Explainable Fraud Transaction Detection on Heterogeneous Graphs [paper]
- [LOG 22]GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks [paper]
- [LOG 22] Towards Training GNNs using Explanation Directed Message Passing [paper]
- [The Webconf 22] Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning [paper]
- [AAAI 22] Prototype-Based Explanations for Graph Neural Networks [paper]
- [AAAI 22] KerGNNs: Interpretable Graph Neural Networks with Graph Kernels[paper]
- [AAAI 22] ProtGNN: Towards Self-Explaining Graph Neural Networks [paper]
- [IEEE Big Data 22] Trade less Accuracy for Fairness and Trade-off Explanation for GNN [paper]
- [CIKM 22] GRETEL: A unified framework for Graph Counterfactual Explanation Evaluation [paper]
- [CIKM 22] GRETEL: Graph Counterfactual Explanation Evaluation Framework[paper]
- [CIKM 22] A Model-Centric Explainer for Graph Neural Network based Node Classification [paper]
- [IJCAI 22] What Does My GNN Really Capture? On Exploring Internal GNN Representations [paper]
- [ECML PKDD 22] Improving the quality of rule-based GNN explanations [paper]
- [MICCAI 22] Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis [paper]
- [MICCAI 22] Sparse Interpretation of Graph Convolutional Networks for Multi-modal Diagnosis of Alzheimer’s Disease [paper]
- [EuroS&P 22] Illuminati: Towards Explaining Graph Neural Networks for Cybersecurity Analysis [paper]
- [INFOCOM 22] Interpretability Evaluation of Botnet Detection Model based on Graph Neural Network [paper]
- [GLOBECOM 22] Shapley Explainer - An Interpretation Method for GNNs Used in SDN [paper]
- [GLOBECOM 22] An Explainer for Temporal Graph Neural Networks [paper]
- [TKDE 22] Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks [paper]
- [TNNLS 22] Interpretable Graph Reservoir Computing With the Temporal Pattern Attention [paper]
- [TNNLS22] A Meta-Learning Approach for Training Explainable Graph Neural Networks [paper]
- [TNNLS 22] Explaining Deep Graph Networks via Input Perturbation [paper]
- [TNNLS 22] A Meta-Learning Approach for Training Explainable Graph Neural Network [paper]
- [DMKD 22] On GNN explanability with activation patterns [paper]
- [KBS 22] EGNN: Constructing explainable graph neural networks via knowledge distillation [paper]
- [XKDD 22] GREASE: Generate Factual and Counterfactual Explanations for GNN-based Recommendations [paper]
- [AI 22] Are Graph Neural Network Explainers Robust to Graph Noises? [paper]
- [TAI 22] Prototype-based Interpretable Graph Neural Networks [paper]
- [BRACIS 22] ConveXplainer for Graph Neural Networks [paper]
- [GLB 22] An Explainable AI Library for Benchmarking Graph Explainers [paper]
- [DASFAA 22] On Global Explainability of Graph Neural Networks [paper]
- [ISBI 22] Interpretable Graph Convolutional Network Of Multi-Modality Brain Imaging For Alzheimer’s Disease Diagnosis [paper]
- [Bioinformatics] GNN-SubNet: disease subnetwork detection with explainable Graph Neural Networks [paper]
- [Medical Imaging 2022] Phenotype guided interpretable graph convolutional network analysis of fMRI data reveals changing brain connectivity during adolescence [paper]
- [NeuroComputing 22] Perturb more, trap more: Understanding behaviors of graph neural networks [paper]
- [DSN 22] CFGExplainer: Explaining Graph Neural Network-Based Malware Classification from Control Flow Graphs [paper]
- [MLOG-WSDM22] Providing Node-level Local Explanation for node2vec through Reinforcement Learning [paper]
- [Arxiv 22] GRAPHSHAP: Motif-based Explanations for Black-box Graph Classifiers [paper]
- [IEEE Access 22] Providing Post-Hoc Explanation for Node Representation Learning Models Through Inductive Conformal Predictions [paper]
- [IEEE 22] Explaining Graph Neural Networks With Topology-Aware Node Selection: Application in Air Quality Inference [paper]
- [BioRxiv 22] GNN-SubNet: disease subnetwork detection with explainable Graph Neural Networks [paper]
- [IEEE Robotics and Automation Letters 22] Efficient and Interpretable Robot Manipulation with Graph Neural Networks [paper]
- [Arxiv 22] Deconfounding to Explanation Evaluation in Graph Neural Networks [paper]
- [Arxiv 22] GANExplainer: GAN-based Graph Neural Networks Explainer [paper]
- [Arxiv 22] On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach [paper]
- [Arxiv 22] Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples [paper]
- [Arxiv 22] Exploring Explainability Methods for Graph Neural Networks [paper]
- [Arxiv 22] PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks [paper]
- [Arxiv 22] A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation [paper]
- [Arxiv 22] Toward Multiple Specialty Learners for Explaining GNNs via Online Knowledge Distillation [paper]
- [Openreview 23] MEGAN: Multi Explanation Graph Attention Network [paper]
- [Openreview 23] TGP: Explainable Temporal Graph Neural Networks for Personalized Recommendation [paper]
- [Openreview 23] Rethinking the Explanation of Graph Neural Network via Non-parametric Subgraph Matching [paper]
- [Openreview 23] On Regularization for Explaining Graph Neural Networks: An Information Theory Perspective [paper]
- [Arxiv 22] Learning to Explain Graph Neural Networks [paper]
- [Arxiv 22] Towards Prototype-Based Self-Explainable Graph Neural Network [paper]
- [Arxiv 22] PGX: A Multi-level GNN Explanation Framework Based on Separate Knowledge Distillation Processes [paper]
- [Arxiv 22] Global Concept-Based Interpretability for Graph Neural Networks via Neuron Analysis [paper]
- [Arxiv 22] Explainability in subgraphs-enhanced Graph Neural Networks [paper]
- [Arxiv 22] Defending Against Backdoor Attack on Graph Nerual Network by Explainability [paper]
- [Arxiv 22] XG-BoT: An Explainable Deep Graph Neural Network for Botnet Detection and Forensics [paper]
- [Arxiv 22] Explaining Dynamic Graph Neural Networks via Relevance Back-propagation [paper]
- [Arxiv 22] EiX-GNN : Concept-level eigencentrality explainer for graph neural networks [paper]
- [Arxiv 22] MotifExplainer: a Motif-based Graph Neural Network Explainer [paper]
- [Arxiv 22] Faithful Explanations for Deep Graph Models [paper]
- [Arxiv 22] Towards Explanation for Unsupervised Graph-Level Representation Learning [paper]
- [Arxiv 22] BAGEL: A Benchmark for Assessing Graph Neural Network Explanations [paper]
- [Arxiv 22] BrainIB: Interpretable Brain Network-based Psychiatric Diagnosis with Graph Information Bottleneck [paper]
- [Arxiv 22] A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability [paper]
- [Arxiv 22] Explainability in Graph Neural Networks: An Experimental Survey [paper]
- [Arxiv 22] Explainability and Graph Learning from Social Interactions [paper]
- [Arxiv 22] Cognitive Explainers of Graph Neural Networks Based on Medical Concepts [paper]
Year 2021
- [NeurIPS 2021] Reinforcement Learning Enhanced Explainer for Graph Neural Networks [paper]
- [NeurIPS 2021] Towards Multi-Grained Explainability for Graph Neural Networks [paper]
- [NeurIPS 2021] Robust Counterfactual Explanations on Graph Neural Networks [paper]
- [ICML 2021] On Explainability of Graph Neural Networks via Subgraph Explorations[paper]
- [ICML 2021] Generative Causal Explanations for Graph Neural Networks[paper]
- [ICML 2021] Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity[paper]
- [ICML 2021] Automated Graph Representation Learning with Hyperparameter Importance Explanation[paper]
- [ICLR 2021] Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking[paper]
- [ICLR 2021] Graph Information Bottleneck for Subgraph Recognition [paper]
- [KDD 2021] When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods[paper]
- [KDD 2021] Counterfactual Graphs for Explainable Classification of Brain Networks [paper]
- [CVPR 2021] Quantifying Explainers of Graph Neural Networks in Computational Pathology.[paper]
- [NAACL 2021] Counterfactual Supporting Facts Extraction for Explainable Medical Record Based Diagnosis with Graph Network. [paper]
- [AAAI 2021] Motif-Driven Contrastive Learning of Graph Representations [paper]
- [TPAMI 21] Higher-Order Explanations of Graph Neural Networks via Relevant Walks [paper]
- [WWW 2021] Interpreting and Unifying Graph Neural Networks with An Optimization Framework [paper]
- [Genome medicine 21] Explaining decisions of Graph Convolutional Neural Networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer [paper]
- [IJCKG 21] Knowledge Graph Embedding in E-commerce Applications: Attentive Reasoning, Explanations, and Transferable Rules [paper]
- [RuleML+RR 21] Combining Sub-Symbolic and Symbolic Methods for Explainability [paper]
- [PAKDD 21] SCARLET: Explainable Attention based Graph Neural Network for Fake News spreader prediction [paper]
- [J. Chem. Inf. Model] Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment [paper]
- [BioRxiv 21] APRILE: Exploring the Molecular Mechanisms of Drug Side Effects with Explainable Graph Neural Networks [paper]
- [ISM 21] Edge-Level Explanations for Graph Neural Networks by Extending Explainability Methods for Convolutional Neural Networks [paper]
- [OpenReview 21] FlowX: Towards Explainable Graph Neural Networks via Message Flows [paper]
- [Arxiv 21] Towards the Explanation of Graph Neural Networks in Digital Pathology with Information Flows [paper]
- [Arxiv 21] SEEN: Sharpening Explanations for Graph Neural Networks using Explanations from Neighborhoods [paper]
- [Arxiv 21] Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation [paper]
- [Arxiv 21] Learnt Sparsification for Interpretable Graph Neural Networks [paper]
- [Arxiv 21] IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease prediction [paper]
- [ICML workshop 21] GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks [paper]
- [ICML workshop 21] BrainNNExplainer: An Interpretable Graph Neural Network Framework for Brain Network based Disease Analysis [paper]
- [ICML workshop 21] Reliable Graph Neural Network Explanations Through Adversarial Training [paper]
- [ICML workshop 21] Reimagining GNN Explanations with ideas from Tabular Data [paper]
- [ICML workshop 21] Towards Automated Evaluation of Explanations in Graph Neural Networks [paper]
- [ICML workshop 21] Quantitative Evaluation of Explainable Graph Neural Networks for Molecular Property Prediction [paper]
- [ICML workshop 21] SALKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning [paper]
- [ICDM 2021] GNES: Learning to Explain Graph Neural Networks [paper]
- [ICDM 2021] GCN-SE: Attention as Explainability for Node Classification in Dynamic Graphs [paper]
- [ICDM 2021] GNES: Learning to Explain Graph Neural Networks [paper]
- [ICDM 2021] Multi-objective Explanations of GNN Predictions [paper]
- [CIKM 2021] Towards Self-Explainable Graph Neural Network [paper]
- [ECML PKDD 2021] GraphSVX: Shapley Value Explanations for Graph Neural Networks [paper]
- [WiseML 2021] Explainability-based Backdoor Attacks Against Graph Neural Networks [paper]
- [IJCNN 21] MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks [paper]
- [ICCSA 2021] Understanding Drug Abuse Social Network Using Weighted Graph Neural Networks Explainer [paper]
- [NeSy 21] A New Concept for Explaining Graph Neural Networks [paper]
- [Information Fusion 21] Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI [paper]
- [Patterns 21] hcga: Highly Comparative Graph Analysis for network phenotyping [paper]
Year 2020 and Before
- [NeurIPS 2020] Parameterized Explainer for Graph Neural Network.[paper]
- [NeurIPS 2020] PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks [paper]
- [KDD 2020] XGNN: Towards Model-Level Explanations of Graph Neural Networks [paper]
- [ACL 2020]GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media. paper
- [ICML workstop 2020] Contrastive Graph Neural Network Explanation [paper]
- [ICML workstop 2020] Towards Explainable Graph Representations in Digital Pathology [paper]
- [NeurIPS workshop 2020] Explaining Deep Graph Networks with Molecular Counterfactuals [paper]
- [DataMod@CIKM 2020] Exploring Graph-Based Neural Networks for Automatic Brain Tumor Segmentation" [paper]
- [Arxiv 2020] Graph Neural Networks Including Sparse Interpretability [paper]
- [OpenReview 20] A Framework For Differentiable Discovery Of Graph Algorithms [paper]
- [OpenReview 20] Causal Screening to Interpret Graph Neural Networks [paper]
- [Arxiv 20] Understanding Graph Neural Networks from Graph Signal Denoising Perspectives [paper]
- [Arxiv 20] Understanding the Message Passing in Graph Neural Networks via Power Iteration [paper]
- [Arxiv 20] xERTE: Explainable Reasoning on Temporal Knowledge Graphs for Forecasting Future Links [paper]
- [IJCNN 20] GCN-LRP explanation: exploring latent attention of graph convolutional networks] [paper]
- [CD-MAKE 20] Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification [paper]
- [ICDM 19]** Scalable Explanation of Inferences on Large Graphs**[paper]