• Stars
    star
    259
  • Rank 157,669 (Top 4 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created almost 9 years ago
  • Updated over 8 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An on-premises, bare-metal solution for deploying GPU-powered applications in containers

es-dev-stack

An on-premises, bare-metal solution for deploying GPU-powered applications in containers

Blog Post with deployment details:

http://www.emergingstack.com/2016/01/10/Nvidia-GPU-plus-CoreOS-plus-Docker-plus-TensorFlow.html

Prerequisites

  • CoreOS-compatible dedicated machine with vanilla CoreOS installed
  • Current-generation Nvidia GPU (tested with TitanX)

To Build

Nvidia Drivers Installation Image

$ cd es-dev-stack/corenvidiadrivers
$ docker build -t cuda .

GPU-enabled TensorFlow Image

$ cd es-dev-stack/tflowgpu
$ docker build -t tflowgpu .

To Run

Stage 1 - Install Nvidia Drivers & Register GPU Devices (One-Time)

# docker run -it --privileged cuda
# ./mkdevs.sh

Stage 2 - TensorFlow Docker Container with mapped GPU devices

$ docker run --device /dev/nvidia0:/dev/nvidia0 --device /dev/nvidia1:/dev/nvidia1 --device /dev/nvidiactl:/dev/nvidiactl --device /dev/nvidia-uvm:/dev/nvidia-uvm -it -p 8888:8888 --privileged tflowgpu

To Test

  • Open your web browser to http://{host IP}:8888 and launch the CNN.ipynb notebook
  • Execute all steps to confirm
  • To validate GPU is utilized, watch the statistics produced from the Nvidia-SMI tool;
$ docker exec -it {container ID} /bin/bash

From within the running container:

$ watch nvidia-smi

Credits:

This solution takes inspiration from a few community sources. Thanks to;

Nvidia driver setup via Docker - Joshua Kolden [email protected]

ConvNet demo notebook - Edward Banner [email protected]