• Stars
    star
    247
  • Rank 164,117 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 6 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

AttGAN PyTorch Arbitrary Facial Attribute Editing: Only Change What You Want

AttGAN-PyTorch

A PyTorch implementation of AttGAN - Arbitrary Facial Attribute Editing: Only Change What You Want

Teaser Test on the CelebA validating set

Custom Test on my custom set

Inverting 13 attributes respectively. From left to right: Input, Reconstruction, Bald, Bangs, Black_Hair, Blond_Hair, Brown_Hair, Bushy_Eyebrows, Eyeglasses, Male, Mouth_Slightly_Open, Mustache, No_Beard, Pale_Skin, Young

The original TensorFlow version can be found here.

Requirements

  • Python 3
  • PyTorch 0.4.0
  • TensorboardX
pip3 install -r requirements.txt

If you'd like to train with multiple GPUs, please install PyTorch v0.4.0 instead of v1.0.0 or above. The so-called stable version of PyTorch has a bunch of problems with regard to nn.DataParallel(). E.g. pytorch/pytorch#15716, pytorch/pytorch#16532, etc.

pip3 install --upgrade torch==0.4.0
  • Dataset
    • CelebA dataset
      • Images should be placed in ./data/img_align_celeba/*.jpg
      • Attribute labels should be placed in ./data/list_attr_celeba.txt
    • HD-CelebA (optional)
    • CelebA-HQ dataset (optional)
      • Please see here.
      • Images should be placed in ./data/celeba-hq/celeba-*/*.jpg
      • Image list should be placed in ./data/image_list.txt
  • Pretrained models: download the models you need and unzip the files to ./output/ as below,
    output
    β”œβ”€β”€ 128_shortcut1_inject0_none
    β”œβ”€β”€ 128_shortcut1_inject1_none
    β”œβ”€β”€ 256_shortcut1_inject0_none
    β”œβ”€β”€ 256_shortcut1_inject1_none
    β”œβ”€β”€ 256_shortcut1_inject0_none_hq
    β”œβ”€β”€ 256_shortcut1_inject1_none_hq
    β”œβ”€β”€ 384_shortcut1_inject0_none_hq
    └── 384_shortcut1_inject1_none_hq
    

Usage

To train an AttGAN on CelebA 128x128

CUDA_VISIBLE_DEVICES=0 \
python train.py \
--img_size 128 \
--shortcut_layers 1 \
--inject_layers 1 \
--experiment_name 128_shortcut1_inject1_none \
--gpu

To train an AttGAN on CelebA-HQ 256x256 with multiple GPUs

CUDA_VISIBLE_DEVICES=0 \
python train.py \
--data CelebA-HQ \
--img_size 256 \
--shortcut_layers 1 \
--inject_layers 1 \
--experiment_name 256_shortcut1_inject1_none_hq \
--gpu \
--multi_gpu

To visualize training details

tensorboard \
--logdir ./output

To test with single attribute editing

Test

CUDA_VISIBLE_DEVICES=0 \
python test.py \
--experiment_name 128_shortcut1_inject1_none \
--test_int 1.0 \
--gpu

To test with multiple attributes editing

Test Multi

CUDA_VISIBLE_DEVICES=0 \
python test_multi.py \
--experiment_name 128_shortcut1_inject1_none \
--test_atts Pale_Skin Male \
--test_ints 0.5 0.5 \
--gpu

To test with attribute intensity control

Test Slide

CUDA_VISIBLE_DEVICES=0 \
python test_slide.py \
--experiment_name 128_shortcut1_inject1_none \
--test_att Male \
--test_int_min -1.0 \
--test_int_max 1.0 \
--n_slide 10 \
--gpu

To test with your custom images (supports test.py, test_multi.py, test_slide.py)

CUDA_VISIBLE_DEVICES=0 \
python test.py \
--experiment_name 384_shortcut1_inject1_none_hq \
--test_int 1.0 \
--gpu \
--custom_img

Your custom images are supposed to be in ./data/custom and you also need an attribute list of the images ./data/list_attr_custom.txt. Please crop and resize them into square images in advance.