• Stars
    star
    123
  • Rank 290,145 (Top 6 %)
  • Language
    R
  • Created over 7 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Simplifies plotting of database and sparklyr data

dbplot

Build Status CRAN_Status_Badge Coverage status

Leverages dplyr to process the calculations of a plot inside a database. This package provides helper functions that abstract the work at three levels:

  1. Functions that ouput a ggplot2 object
  2. Functions that outputs a data.frame object with the calculations
  3. Creates the formula needed to calculate bins for a Histogram or a Raster plot

Installation

You can install the released version from CRAN:

# install.packages("dbplot")

Or the the development version from GitHub, using the remotes package:

# install.packages("remotes")
# remotes::install_github("edgararuiz/dbplot")

Connecting to a data source

Example

In addition to database connections, the functions work with sparklyr. A local RSQLite database will be used for the examples in this README.

library(DBI)
library(odbc)
library(dplyr)

con <- dbConnect(RSQLite::SQLite(), ":memory:")
db_flights <- copy_to(con, nycflights13::flights, "flights")

ggplot

Histogram

By default dbplot_histogram() creates a 30 bin histogram

library(ggplot2)

db_flights %>% 
  dbplot_histogram(distance)

Use binwidth to fix the bin size

db_flights %>% 
  dbplot_histogram(distance, binwidth = 400)

Because it outputs a ggplot2 object, more customization can be done

db_flights %>% 
  dbplot_histogram(distance, binwidth = 400) +
  labs(title = "Flights - Distance traveled") +
  theme_bw()

Raster

To visualize two continuous variables, we typically resort to a Scatter plot. However, this may not be practical when visualizing millions or billions of dots representing the intersections of the two variables. A Raster plot may be a better option, because it concentrates the intersections into squares that are easier to parse visually.

A Raster plot basically does the same as a Histogram. It takes two continuous variables and creates discrete 2-dimensional bins represented as squares in the plot. It then determines either the number of rows inside each square or processes some aggregation, like an average.

  • If no fill argument is passed, the default calculation will be count, n()
db_flights %>%
  dbplot_raster(sched_dep_time, sched_arr_time) 

  • Pass an aggregation formula that can run inside the database
db_flights %>%
  dbplot_raster(
    sched_dep_time, 
    sched_arr_time, 
    mean(distance, na.rm = TRUE)
    ) 

  • Increase or decrease for more, or less, definition. The resolution argument controls that, it defaults to 100
db_flights %>%
  dbplot_raster(
    sched_dep_time, 
    sched_arr_time, 
    mean(distance, na.rm = TRUE),
    resolution = 20
    ) 

Bar Plot

  • dbplot_bar() defaults to a tally() of each value in a discrete variable
db_flights %>%
  dbplot_bar(origin)

  • Pass a formula, and column name, that will be operated for each value in the discrete variable
db_flights %>%
  dbplot_bar(origin, avg_delay =  mean(dep_delay, na.rm = TRUE))

Line plot

  • dbplot_line() defaults to a tally() of each value in a discrete variable
db_flights %>%
  dbplot_line(month)

  • Pass a formula that will be operated for each value in the discrete variable
db_flights %>%
  dbplot_line(month, avg_delay = mean(dep_delay, na.rm = TRUE))

Boxplot

It expects a discrete variable to group by, and a continuous variable to calculate the percentiles and IQR. It doesn’t calculate outliers. It has been tested with the following connections:

  • MS SQL Server
  • PostgreSQL
  • Oracle
  • sparklyr

Here is an example using dbplot_boxplot() with a local data frame:

nycflights13::flights %>%
  dbplot_boxplot(origin, distance)

Calculation functions

If a more customized plot is needed, the data the underpins the plots can also be accessed:

  1. db_compute_bins() - Returns a data frame with the bins and count per bin
  2. db_compute_count() - Returns a data frame with the count per discrete value
  3. db_compute_raster() - Returns a data frame with the results per x/y intersection
  4. db_compute_raster2() - Returns same as db_compute_raster() function plus the coordinates of the x/y boxes
  5. db_compute_boxplot() - Returns a data frame with boxplot calculations
db_flights %>%
  db_compute_bins(arr_delay) 
#> # A tibble: 28 x 2
#>    arr_delay  count
#>        <dbl>  <int>
#>  1     NA      9430
#>  2    -86      5325
#>  3    -40.7  207999
#>  4      4.53  79784
#>  5     49.8   19063
#>  6     95.1    7890
#>  7    140.     3746
#>  8    186.     1742
#>  9    231.      921
#> 10    276.      425
#> # … with 18 more rows

The data can be piped to a plot

db_flights %>%
  filter(arr_delay < 100 , arr_delay > -50) %>%
  db_compute_bins(arr_delay) %>%
  ggplot() +
  geom_col(aes(arr_delay, count, fill = count))

db_bin()

Uses ‘rlang’ to build the formula needed to create the bins of a numeric variable in an un-evaluated fashion. This way, the formula can be then passed inside a dplyr verb.

db_bin(var)
#> (((max(var, na.rm = TRUE) - min(var, na.rm = TRUE))/30) * ifelse(as.integer(floor((var - 
#>     min(var, na.rm = TRUE))/((max(var, na.rm = TRUE) - min(var, 
#>     na.rm = TRUE))/30))) == 30, as.integer(floor((var - min(var, 
#>     na.rm = TRUE))/((max(var, na.rm = TRUE) - min(var, na.rm = TRUE))/30))) - 
#>     1, as.integer(floor((var - min(var, na.rm = TRUE))/((max(var, 
#>     na.rm = TRUE) - min(var, na.rm = TRUE))/30))))) + min(var, 
#>     na.rm = TRUE)
db_flights %>%
  group_by(x = !! db_bin(arr_delay)) %>%
  tally()
#> # Source:   lazy query [?? x 2]
#> # Database: sqlite 3.29.0 [:memory:]
#>         x      n
#>     <dbl>  <int>
#>  1  NA      9430
#>  2 -86      5325
#>  3 -40.7  207999
#>  4   4.53  79784
#>  5  49.8   19063
#>  6  95.1    7890
#>  7 140.     3746
#>  8 186.     1742
#>  9 231.      921
#> 10 276.      425
#> # … with more rows
db_flights %>%
  filter(!is.na(arr_delay)) %>%
  group_by(x = !! db_bin(arr_delay)) %>%
  tally()%>%
  collect %>%
  ggplot() +
  geom_col(aes(x, n))

dbDisconnect(con)