• Stars
    star
    107
  • Rank 323,587 (Top 7 %)
  • Language
    Python
  • Created over 6 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

reference tensorflow code for named entity tagging

ETagger: Entity Tagger

  • pytorch implementations : ntagger

Description

personally, i'm interested in NER tasks. so, i decided to implement a sequence tagging model which consists of

  • encoding
    • basic embedding
      • 1) word embedding(glove), character convolutional embedding
      • 2) ELMo embedding, character convolutional embedding
      • 3) BERT embedding, character convolutional embedding
        • BERT as feature-based
    • etc embedding
      • pos embedding
      • chunk embedding
    • highway network
      • applied on the concatenated input(ex, Glove + CNN(char) + BERT + POS)
  • contextual encoding
    • 1) multi-layer BiLSTM(normal LSTM, LSTMBlockFusedCell), BiQRNN
    • 2) Transformer(encoder)
  • decoding
    • CRF decoder

there are so many repositories available for reference. i borrowed those codes as many as possible to use here.

my main questions are :

  • can this module perform at the level of state of the art?
    • the f1 score is near SOTA based on Glove(100)+ELMo+CNN(char)+BiLSTM+CRF
      • 92.83% (best, experiments 10, test 16), 92.45%(average, 10 runs, `experiments 10, test 15)
  • how to make it faster when it comes to using the BiLSTM?
    • the solution is LSTMBlockFusedCell().
      • 3.13 times faster than LSTMCell() during training time.
      • 1.26 times faster than LSTMCell() during inference time.
  • can the Transformer have competing results against the BiLSTM? and how much faster?
    • contextual encoding by the Transformer encoder yields competing results.
      • in case the sequence to sequence model like translation, the multi-head attention mechanism might be very powerful for alignments.
      • however, for sequence tagging, the source of power is from point-wise feed forward net with wide range of kernel size. it is not from the multi-head attention only.
        • if you are using kernel size 1, then the the performance will be very worse than you expect.
      • it seems that point-wise feed forward net collects contextual information in the layer by layer manner.
        • this is very similar with hierarchical convolutional neural network.
      • i'd like to say Attention is Not All you need
    • you can see the below evaluation results.
      • multi-layer BiLSTM using LSTMBlockFusedCell() is slightly faster than the Transformer with 4 layers on GPU.
      • moreover, the BiLSTM is 2 times faster on CPU environment(multi-thread) than on GPU.
        • LSTMBlockFusedCell() is well optimized for multi-core CPU via multi-threading.
        • i guess there might be an overhead when copying b/w GPU memory and main memory.
      • the BiLSTM is 3 ~ 4 times faster than the Transformer version on 1 CPU(single-thread)
      • during inference time, 1 layer BiLSTM on 1 CPU takes just 4.2 msec per sentence on average.
  • how to use a trained model from C++? is it much faster?
    • freeze model, convert to memory mapped format and load it via tensorflow C++ API.
      • 1 layer BiLSTM on multi CPU takes 2.04 msec per sentence on average.
      • 1 layer BiLSTM on single CPU takes 2.68 msec per sentence on average.

Pre-requisites

python >= 3.6

$ python -m venv python3.6
$ source /home/python3.6/bin/activate
or
* after installing conda
$ conda create -n python3.6 python=3.6
$ conda activate python3.6

tensorflow >= 1.10

* tensorflow < 2.0
$ python -m pip install tensorflow-gpu
* version matches
  tensorflow 1.10, CUDA 9.0, cuDNN 7.12
  (cuda-9.0-pkg/cuda-9.0/lib64, cudnn-9.0/lib64)
  tensorflow 1.11, CUDA 9.0, cuDNN 7.31
  (cuda-9.0-pkg/cuda-9.0/lib64, cudnn-9.0-v73/lib64)
  tensorflow 1.11, CUDA 9.0, cuDNN 7.31, TensorRT 4.0
  (cuda-9.0-pkg/cuda-9.0/lib64, cudnn-9.0-v73/lib64, TensorRT-4.0.1.6/lib)

requirements

$ python -m pip install -r requirements

tf_metrics

$ git clone https://github.com/guillaumegenthial/tf_metrics.git
$ cd tf_metrics
$ python setup.py install

glove embedding

$ cd etagger
$ mkdir embeddings
$ ls embeddings
glove.840B.300d.zip glove.6B.zip
$ unzip glove.840B.300d.zip
$ unzip glove.6B.zip 

bilm

$ cd bilm-tf
$ python setup.py install
$ cd etagger
$ ls embeddings
embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json  embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5
  • test
* run `embvec.py` and test
$ python test_bilm.py

bert

  • clone bert in the path of etagger/bert
$ cd etagger
$ git clone https://github.com/google-research/bert.git
  • download cased_L-12_H-768_A-12, cased_L-24_H-1024_A-16, wwm_cased_L-24_H-1024_A-16
$ cd etagger
$ ls embeddings
cased_L-12_H-768_A-12  cased_L-24_H-1024_A-16 wwm_cased_L-24_H-1024_A-16

spacy [optional]

  • if you want to analyze input string and see how it detects entities, then you need to install spacy lib.
$ python -m pip install spacy
$ python -m spacy download en

tensorflow_qrnn [optional]

* before install qrnn, remove `TENSORFLOW_BUILD_DIR` path from `LD_LIBRARY_PATH`
$ python -m pip install qrnn
* test
cd tensorflow_qrnn/test
$ python test_fo_pool.py

How to run

convert word embedding to pickle

* merge train.txt, dev.txt to train-dev.txt
$ cat data/train.txt data/dev.txt > data/train-dev.txt

* for Glove
$ python embvec.py --emb_path embeddings/glove.6B.100d.txt --wrd_dim 100 --train_path data/train-dev.txt > embeddings/vocab.txt
$ python embvec.py --emb_path embeddings/glove.6B.200d.txt --wrd_dim 200 --train_path data/train-dev.txt > embeddings/vocab.txt
$ python embvec.py --emb_path embeddings/glove.6B.300d.txt --wrd_dim 300 --train_path data/train-dev.txt > embeddings/vocab.txt
$ python embvec.py --emb_path embeddings/glove.840B.300d.txt --wrd_dim 300 --train_path data/train-dev.txt --lowercase False > embeddings/vocab.txt

* for ELMo
$ python embvec.py --emb_path embeddings/glove.6B.100d.txt --wrd_dim 100 --train_path data/train-dev.txt --elmo_vocab_path embeddings/elmo_vocab.txt --elmo_options_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json --elmo_weight_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5 > embeddings/vocab.txt
$ python embvec.py --emb_path embeddings/glove.6B.300d.txt --wrd_dim 300 --train_path data/train-dev.txt --elmo_vocab_path embeddings/elmo_vocab.txt --elmo_options_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json --elmo_weight_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5 > embeddings/vocab.txt
$ python embvec.py --emb_path embeddings/glove.840B.300d.txt --wrd_dim 300 --train_path data/train-dev.txt --lowercase False --elmo_vocab_path embeddings/elmo_vocab.txt --elmo_options_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json --elmo_weight_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5 > embeddings/vocab.txt 

* for BERT
$ python embvec.py --emb_path embeddings/glove.6B.100d.txt --wrd_dim 100 --train_path data/train-dev.txt --bert_config_path embeddings/cased_L-12_H-768_A-12/bert_config.json --bert_vocab_path embeddings/cased_L-12_H-768_A-12/vocab.txt --bert_do_lower_case False --bert_init_checkpoint embeddings/cased_L-12_H-768_A-12/bert_model.ckpt --bert_max_seq_length 180 --bert_dim 768 > embeddings/vocab.txt

$ python embvec.py --emb_path embeddings/glove.6B.100d.txt --wrd_dim 100 --train_path data/train-dev.txt --bert_config_path embeddings/cased_L-24_H-1024_A-16/bert_config.json --bert_vocab_path embeddings/cased_L-24_H-1024_A-16/vocab.txt --bert_do_lower_case False --bert_init_checkpoint embeddings/cased_L-24_H-1024_A-16/bert_model.ckpt --bert_max_seq_length 180 > embeddings/vocab.txt
$ python embvec.py --emb_path embeddings/glove.6B.300d.txt --wrd_dim 300 --train_path data/train-dev.txt --bert_config_path embeddings/cased_L-24_H-1024_A-16/bert_config.json --bert_vocab_path embeddings/cased_L-24_H-1024_A-16/vocab.txt --bert_do_lower_case False --bert_init_checkpoint embeddings/cased_L-24_H-1024_A-16/bert_model.ckpt --bert_max_seq_length 180 > embeddings/vocab.txt
$ python embvec.py --emb_path embeddings/glove.840B.300d.txt --wrd_dim 300 --train_path data/train-dev.txt --lowercase False --bert_config_path embeddings/cased_L-24_H-1024_A-16/bert_config.json --bert_vocab_path embeddings/cased_L-24_H-1024_A-16/vocab.txt --bert_do_lower_case False --bert_init_checkpoint embeddings/cased_L-24_H-1024_A-16/bert_model.ckpt --bert_max_seq_length 180 > embeddings/vocab.txt

$ python embvec.py --emb_path embeddings/glove.6B.100d.txt --wrd_dim 100 --train_path data/train-dev.txt --bert_config_path embeddings/wwm_cased_L-24_H-1024_A-16/bert_config.json --bert_vocab_path embeddings/wwm_cased_L-24_H-1024_A-16/vocab.txt --bert_do_lower_case False --bert_init_checkpoint embeddings/wwm_cased_L-24_H-1024_A-16/bert_model.ckpt --bert_max_seq_length 180 > embeddings/vocab.txt

* for BERT+ELMo
$ python embvec.py --emb_path embeddings/glove.6B.100d.txt --wrd_dim 100 --train_path data/train-dev.txt --bert_config_path embeddings/cased_L-24_H-1024_A-16/bert_config.json --bert_vocab_path embeddings/cased_L-24_H-1024_A-16/vocab.txt --bert_do_lower_case False --bert_init_checkpoint embeddings/cased_L-24_H-1024_A-16/bert_model.ckpt --bert_max_seq_length 180 --elmo_vocab_path embeddings/elmo_vocab.txt --elmo_options_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json --elmo_weight_path embeddings/elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5 > embeddings/vocab.txt

train

* for Glove, ELMo
$ python train.py --emb_path embeddings/glove.6B.100d.txt.pkl --wrd_dim 100 --batch_size 20 --epoch 70
$ python train.py --emb_path embeddings/glove.6B.300d.txt.pkl --wrd_dim 300 --batch_size 20 --epoch 70
$ python train.py --emb_path embeddings/glove.840B.300d.txt.pkl --wrd_dim 300 --batch_size 20 --epoch 70

* for BERT, BERT+ELMo
$ python train.py --emb_path embeddings/glove.6B.100d.txt.pkl --wrd_dim 100 --batch_size 16 --epoch 70
$ python train.py --emb_path embeddings/glove.6B.300d.txt.pkl --wrd_dim 300 --batch_size 16 --epoch 70
$ python train.py --emb_path embeddings/glove.840B.300d.txt.pkl --wrd_dim 300 --batch_size 16 --epoch 70

$ rm -rf runs;
$ screen -S tensorboard
$ tensorboard --logdir runs/summaries/ --port 6008
* ctrl+a+c

inference(bucket)

$ python inference.py --mode bucket --emb_path embeddings/glove.6B.100d.txt.pkl --wrd_dim 100 --restore checkpoint/ner_model < data/test.txt > pred.txt
$ python inference.py --mode bucket --emb_path embeddings/glove.6B.300d.txt.pkl --wrd_dim 300 --restore checkpoint/ner_model < data/test.txt > pred.txt
$ python inference.py --mode bucket --emb_path embeddings/glove.840B.300d.txt.pkl --wrd_dim 300 --restore checkpoint/ner_model < data/test.txt > pred.txt

$ perl etc/conlleval < pred.txt

inference(line)

$ python inference.py --mode line --emb_path embeddings/glove.6B.100d.txt.pkl --wrd_dim 100 --restore checkpoint/ner_model
...
Obama left office in January 2017 with a 60% approval rating and currently resides in Washington, D.C.

Obama NNP O O B-PER
left VBD O O O
office NN O O O
in IN O O O
January NNP O B-DATE O
2017 CD O I-DATE O
with IN O O O
a DT O O O
60 CD O B-PERCENT O
% NN O I-PERCENT O
approval NN O O O
rating NN O O O
and CC O O O
currently RB O O O
resides VBZ O O O
in IN O O O
Washington NNP O B-GPE B-LOC
, , O I-GPE O
D.C. NNP O B-GPE B-LOC

The Beatles were an English rock band formed in Liverpool in 1960.

The DT O O O
Beatles NNPS O B-PERSON B-MISC
were VBD O O O
an DT O O O
English JJ O B-LANGUAGE B-MISC
rock NN O O O
band NN O O O
formed VBN O O O
in IN O O O
Liverpool NNP O B-GPE B-LOC
in IN O O O
1960 CD O B-DATE O
. . O I-DATE O

inference(bucket) using frozen model, tensorRT, C++

* create virtual env `python -m venv python3.6_tfsrc` and activate it.
$ python -m venv python3.6_tfsrc
$ source /home/python3.6_tfsrc/bin/activate

* install bazel ( https://github.com/bazelbuild/bazel/releases , https://www.tensorflow.org/install/source#linux )
* ex) bazel 0.15.0 for tensorflow 1.11.0, tensorflow 1.12.0
$ ./bazel-${bazel-version}-installer-linux-x86_64.sh --user
$ source /data1/index.shin/.bazel/bin/bazel-complete.bash

* build tensorflow from source.
$ git clone https://github.com/tensorflow/tensorflow.git tensorflow-src-cpu
$ cd tensorflow-src-cpu
* you should checkout the same version of pip used for training.
$ git checkout r1.11
* modify a source file for memory mapped graph(convert_graphdef_memmapped_format)
  ./tensorflow/core/platform/posix/posix_file_system.cc:  mmap(nullptr, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0); in 'NewReadOnlyMemoryRegionFromFile'
  MAP_PRIVATE -> MAP_SHARED
* configure without CUDA
$ ./configure

* build pip package (for FMA, AVX and SSE optimization, see https://medium.com/@sometimescasey/building-tensorflow-from-source-for-sse-avx-fma-instructions-worth-the-effort-fbda4e30eec3 ).
$ python -m pip install --upgrade pip
$ python -m pip install --upgrade setuptools
$ python -m pip install keras_applications --no-deps
$ python -m pip install keras_preprocessing --no-deps
$ bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package
$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
* install pip package
$ python -m pip uninstall tensorflow
$ python -m pip install /tmp/tensorflow_pkg/tensorflow-1.11.0-cp36-cp36m-linux_x86_64.whl

* build libraries and binaries we need.
$ bazel build --config=opt //tensorflow:libtensorflow.so
$ bazel build --config=opt //tensorflow:libtensorflow_cc.so
$ bazel build --config=opt //tensorflow:libtensorflow_framework.so
$ bazel build --config=opt //tensorflow/python/tools:optimize_for_inference
$ bazel build --config=opt //tensorflow/tools/quantization:quantize_graph
$ bazel build --config=opt //tensorflow/contrib/util:convert_graphdef_memmapped_format
$ bazel build --config=opt //tensorflow/tools/graph_transforms:transform_graph

* copy libraries to dist directory, export dist and includes directory.
$ export TENSORFLOW_SOURCE_DIR='/home/tensorflow-src-cpu'
$ export TENSORFLOW_BUILD_DIR='/home/tensorflow-dist-cpu'
$ cp -rf ${TENSORFLOW_SOURCE_DIR}/bazel-bin/tensorflow/*.so ${TENSORFLOW_BUILD_DIR}/

* for LSTMBlockFusedCell()
$ rnn_path=`python -c "import tensorflow; print(tensorflow.contrib.rnn.__path__[0])"`
$ rnn_ops_lib=${rnn_path}/python/ops/_lstm_ops.so
$ cp -rf ${rnn_ops_lib} ${TENSORFLOW_BUILD_DIR}
$ export LD_LIBRARY_PATH=${TENSORFLOW_BUILD_DIR}:$LD_LIBRARY_PATH

* for QRNN [optional]
$ qrnn_path=`python -c "import tensorflow as tf; print(tf.__path__[0])"`
$ qrnn_lib=${qrnn_path}/../qrnn_lib.cpython-36m-x86_64-linux-gnu.so
$ cp -rf ${qrnn_lib} ${TENSORFLOW_BUILD_DIR}
  • .bashrc sample
# tensorflow so, header dist
export TENSORFLOW_SOURCE_DIR='/home/tensorflow-src-cpu'
export TENSORFLOW_BUILD_DIR='/home/tensorflow-dist-cpu'
# for loading _lstm_ops.so, qrnn_lib.cpython-36m-x86_64-linux-gnu.so
export LD_LIBRARY_PATH=${TENSORFLOW_BUILD_DIR}:$LD_LIBRARY_PATH
  • test build sample model and inference by C++
$ cd /home/etagger
* build and save sample model
$ cd inference
$ python train_example.py

* inference using python
$ python python/inference_example.py

* inference using c++
* edit etagger/inference/cc/CMakeLists.txt
  find_package(TensorFlow 1.11 EXACT REQUIRED)
$ cd etagger/inference/cc
$ mkdir build
$ cd build
* cmake >= 3.11, set DPYTHON_EXECUTABLE as absolute path
$ cmake .. -DPYTHON_EXECUTABLE=/usr/local/bin/python3.6m
$ make
$ cd ../..
$ ./cc/build/inference_example
  • test build iris model, freezing and inference by C++
$ cd /home/etagger
* build and save iris model
$ cd inference
$ python train_iris.py

* freeze graph
$ python freeze.py --model_dir exported --output_node_names logits --frozen_model_name iris_frozen.pb

* inference using python
$ python python/inference_iris.py

* inference using C++
* edit etagger/inference/cc/CMakeLists.txt
  find_package(TensorFlow 1.11 EXACT REQUIRED)
* cmake >= 3.11, set DPYTHON_EXECUTABLE as absolute path
$ cd etagger/inference/cc
$ mkdir build
$ cd build
$ cmake .. -DPYTHON_EXECUTABLE=/usr/local/bin/python3.6m
$ make
$ cd ../..
$ ./cc/build/inference_iris
  • export etagger model, freezing and inference by C++
$ cd inference
* let's assume that we have a saved model :
*   <note> BiLSTM, LSTMBlockFusedCell()
*     : if you can't find `BlockLSTM` when using import_meta_graph()
*     : similar issue => https://stackoverflow.com/questions/50298058/restore-trained-tensorflow-model-keyerror-blocklstm
      : how to fix? => https://github.com/tensorflow/tensorflow/issues/23369
      : what about C++? => https://stackoverflow.com/questions/50475320/executing-frozen-tensorflow-graph-that-uses-tensorflow-contrib-resampler-using-c
        we can load '_lstm_ops.so' for LSTMBlockFusedCell().

* restore the model to check list of operations, placeholders and tensors for mapping. and export it another place.
$ python export.py --restore ../checkpoint/ner_model --export exported/ner_model --export-pb exported

* freeze graph
$ python freeze.py --model_dir exported --output_node_names logits_indices,sentence_lengths --frozen_model_name ner_frozen.pb
* freeze graph for bert
$ python freeze.py --model_dir exported --output_node_names logits_indices,sentence_lengths,bert_embeddings_subgraph --frozen_model_name ner_frozen.pb

$ ln -s ../embeddings embeddings
$ ln -s ../data data

* inference using python
$ python python/inference.py --emb_path embeddings/glove.6B.100d.txt.pkl --wrd_dim 100 --frozen_path exported/ner_frozen.pb < ../data/test.txt > pred.txt
$ python python/inference.py --emb_path embeddings/glove.6B.300d.txt.pkl --wrd_dim 300 --frozen_path exported/ner_frozen.pb < ../data/test.txt > pred.txt
$ python python/inference.py --emb_path embeddings/glove.840B.300d.txt.pkl --wrd_dim 300 --frozen_path exported/ner_frozen.pb < ../data/test.txt > pred.txt
* you may need to modify build_input_feed_dict() in 'python/inference.py' for emb_class='bert'.
* since some of input tensor might not exist in the frozen graph. ex) 'input_data_chk_ids'

* inference using python with optimized graph_def via tensorRT (only for GPU)
$ python python/inference_trt.py --emb_path embeddings/glove.6B.100d.txt.pkl --wrd_dim 100 --frozen_path exported/ner_frozen.pb < ../data/test.txt > pred.txt
$ python python/inference_trt.py --emb_path embeddings/glove.6B.300d.txt.pkl --wrd_dim 300 --frozen_path exported/ner_frozen.pb < ../data/test.txt > pred.txt
$ python python/inference_trt.py --emb_path embeddings/glove.840B.300d.txt.pkl --wrd_dim 300 --frozen_path exported/ner_frozen.pb < ../data/test.txt > pred.txt
* inspect `pred.txt` whether the predictions are same.
$ perl ../etc/conlleval < pred.txt

* for inference by C++, i implemented emb_class='glove' only.

* inference using C++
$ ./cc/build/inference exported/ner_frozen.pb embeddings/vocab.txt < ../data/test.txt > pred.txt
* inspect `pred.txt` whether the predictions are same.
$ perl ../etc/conlleval < pred.txt
  • optimizing graph for inference, convert it to memory mapped format and inference by C++
$ cd inference

* optimize graph for inference
# not working properly
$ ${TENSORFLOW_SOURCE_DIR}/bazel-bin/tensorflow/python/tools/optimize_for_inference --input=exported/ner_frozen.pb --output=exported/ner_frozen.pb.optimized --input_names=is_train,sentence_length,input_data_pos_ids,input_data_chk_ids,input_data_word_ids,input_data_wordchr_ids --output_names=logits_indices,sentence_lengths 

* quantize graph
# not working properly
$ ${TENSORFLOW_SOURCE_DIR}/bazel-bin/tensorflow/tools/quantization/quantize_graph --input=exported/ner_frozen.pb --output=exported/ner_frozen.pb.rounded --output_node_names=logits_indices,sentence_lengths --mode=weights_rounded

* transform graph
$ ${TENSORFLOW_SOURCE_DIR}/bazel-bin/tensorflow/tools/graph_transforms/transform_graph --in_graph=exported/ner_frozen.pb --out_graph=exported/ner_frozen.pb.transformed --inputs=is_train,sentence_length,input_data_pos_ids,input_data_chk_ids,input_data_word_ids,input_data_wordchr_ids --outputs=logits_indices,sentence_lengths --transforms='strip_unused_nodes merge_duplicate_nodes round_weights(num_steps=256) sort_by_execution_order'

* convert to memory mapped format
$ ${TENSORFLOW_SOURCE_DIR}/bazel-bin/tensorflow/contrib/util/convert_graphdef_memmapped_format --in_graph=exported/ner_frozen.pb --out_graph=exported/ner_frozen.pb.memmapped
or
$ ${TENSORFLOW_SOURCE_DIR}/bazel-bin/tensorflow/contrib/util/convert_graphdef_memmapped_format --in_graph=exported/ner_frozen.pb.transformed --out_graph=exported/ner_frozen.pb.memmapped
* inference using C++
$ ./cc/build/inference exported/ner_frozen.pb.memmapped embeddings/vocab.txt 1 < ../data/test.txt > pred.txt
* inspect `pred.txt` whether the predictions are same.
$ perl ../etc/conlleval < pred.txt

* inspect the memory mapped graph is opened with MAP_SHARED
$ cat /proc/pid/maps
7fae40522000-7fae4a000000 r--s 00000000 08:11 749936602                  /root/etagger/inference/exported/ner_frozen.pb.memmapped
...
  • python wrapper for C
$ cd inference/cc/wrapper
* edit inferency.py : so_path = os.path.dirname(os.path.abspath(__file__)) + '/../build' + '/' + 'libetagger.so'
$ python inference.py --frozen_graph_fn ../../exported/ner_frozen.pb --vocab_fn ../../../embeddings/vocab.txt < ../../../data/test.txt.sentences > pred.txt
or
$ python inference.py --frozen_graph_fn ../../exported/ner_frozen.pb.memmapped --vocab_fn ../../../embeddings/vocab.txt --is_memmapped=True < ../../../data/test.txt.sentences > pred.txt

web api

  • inference api using frozen model
$ cd inference/python/www
$ ./stop.sh
$ ./start.sh
$ cd inference/cc/www
$ ./stop.sh
$ ./start.sh

Evaluation, Dev note, References, Etc