A Fair Comparison of Graph Neural Networks for Graph Classification (ICLR 2020)
Summary
The library includes data and scripts to reproduce the experiments reported in the paper.
If you happen to use or modify this code, please remember to cite our paper:
Federico Errica, Marco Podda, Davide Bacciu, Alessio Micheli: A Fair Comparison of Graph Neural Networks for Graph Classification. Proceedings of the 8th International Conference on Learning Representations (ICLR 2020).
@inproceedings{errica_fair_2020,
title = {A fair comparison of graph neural networks for graph classification},
booktitle = {Proceedings of the 8th {International} {Conference} on {Learning} {Representations} ({ICLR})},
author = {Errica, Federico and Podda, Marco and Bacciu, Davide and Micheli, Alessio},
year = {2020}
}
--
Updated Table with Results (CHEMICAL)
D&D | NCI1 | PROTEINS | |
---|---|---|---|
Baseline | |||
DGCNN | |||
DiffPool | |||
ECC | |||
GIN | |||
GraphSAGE | |||
CGMM | |||
ECGMM | |||
iCGMMf | |||
GSPN | - | - |
Updated Table with Results (SOCIAL + degree)
IMDB-B | IMDB-M | REDDIT-B | REDDIT-5K | COLLAB | |
---|---|---|---|---|---|
Baseline | |||||
DGCNN | |||||
DiffPool | |||||
ECC | - | - | - | ||
GIN | |||||
GraphSAGE | |||||
CGMM | |||||
ECGMM | |||||
iCGMMf | |||||
GSPN | - | - |
If you are interested in an introduction to Deep Graph Networks (and a new library!), check this out:
Bacciu Davide, Errica Federico, Micheli Alessio, Podda Marco: A Gentle Introduction to Deep Learning for Graphs, Neural Networks, 2020. DOI: 10.1016/j.neunet.2020.06.006
.
Installation
We provide a script to install the environment. You will need the conda package manager, which can be installed from here.
To install the required packages, follow there instructions (tested on a linux terminal):
-
clone the repository
-
cd
into the cloned directorycd gnn-comparison
-
run the install script
source install.sh [<your_cuda_version>]
Where <your_cuda_version>
is an optional argument that can be either cpu
, cu92
, cu100
, cu101
. If you do not provide a cuda version, the script will default to cpu
. The script will create a virtual environment named gnn-comparison
, with all the required packages needed to run our code. Important: do NOT run this command using bash
instead of source
!
Instructions
To reproduce the experiments, first preprocess datasets as follows:
python PrepareDatasets.py DATA/CHEMICAL --dataset-name <name> --outer-k 10
python PrepareDatasets.py DATA/SOCIAL_1 --dataset-name <name> --use-one --outer-k 10
python PrepareDatasets.py DATA/SOCIAL_DEGREE --dataset-name <name> --use-degree --outer-k 10
Where <name>
is the name of the dataset. Then, substitute the split (json) files with the ones provided in the data_splits
folder.
Please note that dataset folders should be organized as follows:
CHEMICAL:
NCI1
DD
ENZYMES
PROTEINS
SOCIAL[_1 | _DEGREE]:
IMDB-BINARY
IMDB-MULTI
REDDIT-BINARY
REDDIT-MULTI-5K
COLLAB
Then, you can launch experiments by typing:
cp -r DATA/[CHEMICAL|SOCIAL_1|SOCIAL_DEGREE]/<name> DATA
python Launch_Experiments.py --config-file <config> --dataset-name <name> --result-folder <your-result-folder> --debug
Where <config>
is your config file (e.g. config_BaselineChemical.yml), and <name>
is the dataset name chosen as before.
Additional Notes
You can only use CUDA with the --debug
option, parallel GPUs support is not provided.
Troubleshooting
If you would like PyTorch not to spawn multiple threads for each process (highly recommended), append export OMP_NUM_THREADS=1
to your .bashrc file.