• Stars
    star
    142
  • Rank 258,495 (Top 6 %)
  • Language
  • Created over 5 years ago
  • Updated about 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A tutorial on map matching using OpenStreetMap data

Map matching on OpenStreetMap, a practical tutorial

This tutorial is based on the fast map matching program. It also supports road network in ESRI Shapefile.

Demonstration

Content

Tools used

1. Download routable network from OSM

OSMNX provides a convenient way to download a routable shapefile directly in python.

The original osmnx saves network in an undirected way, therefore we use the script below to save the graph to a bidirectional network where all edges are directed and bidirectional edges (osm tag one-way is false) are represented by two reverse edges.

import osmnx as ox
import time
from shapely.geometry import Polygon
import os
import numpy as np

def save_graph_shapefile_directional(G, filepath=None, encoding="utf-8"):
    # default filepath if none was provided
    if filepath is None:
        filepath = os.path.join(ox.settings.data_folder, "graph_shapefile")

    # if save folder does not already exist, create it (shapefiles
    # get saved as set of files)
    if not filepath == "" and not os.path.exists(filepath):
        os.makedirs(filepath)
    filepath_nodes = os.path.join(filepath, "nodes.shp")
    filepath_edges = os.path.join(filepath, "edges.shp")

    # convert undirected graph to gdfs and stringify non-numeric columns
    gdf_nodes, gdf_edges = ox.utils_graph.graph_to_gdfs(G)
    gdf_nodes = ox.io._stringify_nonnumeric_cols(gdf_nodes)
    gdf_edges = ox.io._stringify_nonnumeric_cols(gdf_edges)
    # We need an unique ID for each edge
    gdf_edges["fid"] = np.arange(0, gdf_edges.shape[0], dtype='int')
    # save the nodes and edges as separate ESRI shapefiles
    gdf_nodes.to_file(filepath_nodes, encoding=encoding)
    gdf_edges.to_file(filepath_edges, encoding=encoding)

print("osmnx version",ox.__version__)

# Download by a bounding box
bounds = (17.4110711999999985,18.4494298999999984,59.1412578999999994,59.8280297000000019)
x1,x2,y1,y2 = bounds
boundary_polygon = Polygon([(x1,y1),(x2,y1),(x2,y2),(x1,y2)])
G = ox.graph_from_polygon(boundary_polygon, network_type='drive')
start_time = time.time()
save_graph_shapefile_directional(G, filepath='./network-new')
print("--- %s seconds ---" % (time.time() - start_time))

# Download by place name
place ="Stockholm, Sweden"
G = ox.graph_from_place(place, network_type='drive', which_result=2)
save_graph_shapefile_directional(G, filepath='stockholm')

# Download by a boundary polygon in geojson
import osmnx as ox
from shapely.geometry import shape
json_file = open("stockholm_boundary.geojson")
import json
data = json.load(json_file)
boundary_polygon = shape(data["features"][0]['geometry'])
G = ox.graph_from_polygon(boundary_polygon, network_type='drive')
save_graph_shapefile_directional(G, filepath='stockholm')

In the third manner, here is a screenshot of the network in QGIS.

2. Run map matching with fmm

Install the fmm program in C++ and Python extension following the instructions.

The network downloaded from OSMNX using the above script is compatible with fmm as it contains

  • fid: id of edge
  • u: source node of an edge
  • v: target node of an edge

Below we show running fmm in Python to match GPS trajectory to the network.

from fmm import FastMapMatch,Network,NetworkGraph,UBODTGenAlgorithm,UBODT,FastMapMatchConfig

### Read network data

network = Network("network/edges.shp","fid","u","v")
print "Nodes {} edges {}".format(network.get_node_count(),network.get_edge_count())
graph = NetworkGraph(network)


### Precompute an UBODT table

# Can be skipped if you already generated an ubodt file
ubodt_gen = UBODTGenAlgorithm(network,graph)
status = ubodt_gen.generate_ubodt("network/ubodt.txt", 0.02, binary=False, use_omp=True)
print status

### Read UBODT

ubodt = UBODT.read_ubodt_csv("network/ubodt.txt")

### Create FMM model
model = FastMapMatch(network,graph,ubodt)

### Define map matching configurations

k = 8
radius = 0.003
gps_error = 0.0005
fmm_config = FastMapMatchConfig(k,radius,gps_error)


### Run map matching for wkt
wkt = "LineString(104.10348 30.71363,104.10348 30.71363,104.10348 30.71363,104.10348 30.71363,104.10348 30.71363)"
result = model.match_wkt(wkt,fmm_config)

### Print map matching result
print "Opath ",list(result.opath)
print "Cpath ",list(result.cpath)
print "WKT ",result.mgeom.export_wkt()

A more complete version of notebook (including matching GPS data stored in files) can be found at https://github.com/cyang-kth/fmm/blob/master/example/notebook/fmm_example.ipynb.

STMATCH algorithm which does not need precomputation can also be used. https://github.com/cyang-kth/fmm/blob/master/example/notebook/stmatch_example.ipynb

Citation information

Please cite fmm in your publications if it helps your research:

Can Yang & Gyozo Gidofalvi (2018) Fast map matching, an algorithm
integrating hidden Markov model with precomputation, International Journal of Geographical Information Science, 32:3, 547-570, DOI: 10.1080/13658816.2017.1400548

Bibtex format

@article{Yang2018fast,
author = {Can Yang and Gyozo Gidofalvi},
title = {Fast map matching, an algorithm integrating hidden Markov model with precomputation},
journal = {International Journal of Geographical Information Science},
volume = {32},
number = {3},
pages = {547-570},
year  = {2018},
publisher = {Taylor & Francis},
doi = {10.1080/13658816.2017.1400548},
}

Contact information

Can Yang, Ph.D. student at KTH, Royal Institute of Technology in Sweden

Email: cyang(at)kth.se

Homepage: https://people.kth.se/~cyang/