• Stars
    star
    1
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created over 3 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

About this Specialization In 2020 the world will generate 50 times the amount of data as in 2011. And 75 times the number of information sources (IDC, 2011). Being able to use this data provides huge opportunities and to turn these opportunities into reality, people need to use data to solve problems. This Specialization, in collaboration with Tableau, is intended for newcomers to data visualization with no prior experience using Tableau. We leverage Tableau's library of resources to demonstrate best practices for data visualization and data storytelling. You will view examples from real world business cases and journalistic examples from leading media companies. By the end of this specialization, you will be able to generate powerful reports and dashboards that will help people make decisions and take action based on their business data. You will use Tableau to create high-impact visualizations of common data analyses to help you see and understand your data. You will apply predicative analytics to improve business decision making. The Specialization culminates in a Capstone Project in which you will use sample data to create visualizations, dashboards, and data models to prepare a presentation to the executive leadership of a fictional company.

More Repositories

1

Deep_Learning

About this Specialization The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. In this Specialization, you will build neural network architectures such as Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, Transformers, and learn how to make them better with strategies such as Dropout, BatchNorm, Xavier/He initialization, and more. You will master these theoretical concepts and their industry applications using Python and TensorFlow. You will tackle real-world case studies such as autonomous driving, sign language reading, music generation, computer vision, speech recognition, and natural language processing. AI is transforming many industries. The Deep Learning Specialization provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI. Along the way, you will get career advice from deep learning experts from industry and academia.
Jupyter Notebook
4
star
2

IBM_DevOps_and_Software_Engineering

Jupyter Notebook
3
star
3

Advanced_DataScience_Capstone

About this Course This project completer has proven a deep understanding on massive parallel data processing, data exploration and visualization, advanced machine learning and deep learning and how to apply his knowledge in a real-world practical use case where he justifies architectural decisions, proves understanding the characteristics of different algorithms, frameworks and technologies and how they impact model performance and scalability. Please note: You are requested to create a short video presentation at the end of the course. This is mandatory to pass. You don't need to share the video in public.
Jupyter Notebook
2
star
4

cmaroblesg.github.io

HTML
1
star
5

Think_Like_a_CFO

Think Like a CFO
1
star