• Stars
    star
    432
  • Rank 100,650 (Top 2 %)
  • Language
    Python
  • Created about 8 years ago
  • Updated over 7 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tutorial on "Practical Neural Networks for NLP: From Theory to Code" at EMNLP 2016

Practical Neural Networks for NLP

A tutorial given by Chris Dyer, Yoav Goldberg, and Graham Neubig at EMNLP 2016 in Austin. The tutorial covers the basic of neural networks for NLP, and how to implement a variety of networks simply and efficiently in the DyNet toolkit.

  • Slides, part 1: Basics

    • Computation graphs and their construction
    • Neural networks in DyNet
    • Recurrent neural networks
    • Minibatching
    • Adding new differentiable functions
  • Slides, part 2: Case studies in NLP

    • Tagging with bidirectional RNNs and character-based embeddings
    • Transition-based dependency parsing
    • Structured prediction meets deep learning