• Stars
    star
    232
  • Rank 172,847 (Top 4 %)
  • Language
    Python
  • License
    Other
  • Created over 7 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Deep Learning Library. For education. Based on pure Numpy. Support CNN, RNN, LSTM, GRU etc.
https://readthedocs.org/projects/numpydl/badge/ https://travis-ci.com/chaoming0625/NumpyDL.svg?branch=master

NumpyDL: Numpy Deep Learning Library

Descriptions

NumpyDL is:

  1. Based on Pure Numpy/Python
  2. For DL Education

Features

Its main features are:

  1. Pure in Numpy
  2. Native to Python
  3. Automatic differentiations are basically supported
  4. Commonly used models are provided: MLP, RNNs, LSTMs and CNNs
  5. Examples for several AI tasks
  6. Application for a toy chatbot

Documentation

Available online documents:

  1. latest docs
  2. development docs
  3. stable docs

Available offline PDF:

  1. latest PDF

Installation

Install NumpyDL using pip:

$> pip install npdl

Install from source code:

$> python setup.py install

Examples

NumpyDL provides several examples of AI tasks:

  • sentence classification
    • LSTM in examples/lstm_sentence_classification.py
    • CNN in examples/cnn_sentence_classification.py
  • mnist handwritten recognition
    • MLP in examples/mlp-mnist.py
    • MLP in examples/mlp-digits.py
    • CNN in examples/cnn-minist.py
  • language modeling
    • RNN in examples/rnn-character-lm.py
    • LSTM in examples/lstm-character-lm.py

One concrete code example in examples/mlp-digits.py:

import numpy as np
from sklearn.datasets import load_digits
import npdl

# prepare
npdl.utils.random.set_seed(1234)

# data
digits = load_digits()
X_train = digits.data
X_train /= np.max(X_train)
Y_train = digits.target
n_classes = np.unique(Y_train).size

# model
model = npdl.model.Model()
model.add(npdl.layers.Dense(n_out=500, n_in=64, activation=npdl.activation.ReLU()))
model.add(npdl.layers.Dense(n_out=n_classes, activation=npdl.activation.Softmax()))
model.compile(loss=npdl.objectives.SCCE(), optimizer=npdl.optimizers.SGD(lr=0.005))

# train
model.fit(X_train, npdl.utils.data.one_hot(Y_train), max_iter=150, validation_split=0.1)

Applications

NumpyDL provides one toy application:

  • Chatbot
    • seq2seq in applications/chatbot/model.py

And its final result:

applications/chatbot/pics/chatbot.png

Supports

NumpyDL supports following deep learning techniques:

  • Layers
    • Linear
    • Dense
    • Softmax
    • Dropout
    • Convolution
    • Embedding
    • BatchNormal
    • MeanPooling
    • MaxPooling
    • SimpleRNN
    • GRU
    • LSTM
    • Flatten
    • DimShuffle
  • Optimizers
    • SGD
    • Momentum
    • NesterovMomentum
    • Adagrad
    • RMSprop
    • Adadelta
    • Adam
    • Adamax
  • Objectives
    • MeanSquaredError
    • HellingerDistance
    • BinaryCrossEntropy
    • SoftmaxCategoricalCrossEntropy
  • Initializations
    • Zero
    • One
    • Uniform
    • Normal
    • LecunUniform
    • GlorotUniform
    • GlorotNormal
    • HeNormal
    • HeUniform
    • Orthogonal
  • Activations
    • Sigmoid
    • Tanh
    • ReLU
    • Linear
    • Softmax
    • Elliot
    • SymmetricElliot
    • SoftPlus
    • SoftSign